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1. Introduction
e Efimov effect & discrete scale invariance

2. Charged analog in non-relativistic system

 Efimovian states in hydrogen molecular ion
Y. Nishida, Phys. Rev. A 105, L0O10802 (2022)

3. Charged analog in relativistic system
e Atomic collapse resonances

& vacuum polarization in graphene

Y. Nishida, Phys. Rev. B 90, 165414 (2014)
Y. Nishida, Phys. Rev. B 94, 085430 (2016)
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3-body Schrodinger equation
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Efimov effect
Its solution ¥(R) x K5 (kR) — sin[|s|In (krg) + J]

Y’ /Y| r=r, has to be fixed by short-range B.C.

If K = k. is asolutionfor kKrg <K 1,
k = (e™/1*Y~"k, are also solutions
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e Scale invariance is broken by short-range B.C.
down to discrete scale invariance

e Long-range Coulomb potential is usually obstacle

Discrete scale invariance for charged particles



Non-relativistic
charged particles

L. D. Landau & E. M. Lifshitz, “Quantum Mechanics”
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Hydrogen molecular ion

=3
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Born-Oppenheimer approximation (M>>m)

 Schrodinger equation for a light particle
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Hydrogen molecular ion
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under electric field produced by far separated charge
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1st-order perturbation AE,, = (V(7)), =0 (n=1)

AL — Vi - "m?;zZ’ 0(x2) (n=2)

Scale invariant attraction for n=2,3,...
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Infinite bound states obeying discrete scale invariance
E toward thresholds of (H)n=23,...

contihuum

Y. Nishida, Phys. Rev. A 105, L010802 (2022)



Hydrogen molecular ion e

i i

Infinite bound states obeying discrete scale invariance
E toward thresholds of (H)n=23,...

contihuum ¢ Efimovian states are resonances
embedded into continuum of (H)n=1

* Relevant to H2* ions or trions
(nuclear systems?)

e Future work:
Their width and experimental probe

Y. Nishida, Phys. Rev. A 105, L010802 (2022)



Relativistic
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Atomic collapse

Hydrogen-like atom from Dirac equation
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Hydrogen-like atom from Dirac equation

PG et . Coulomb potential
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“Atomic collapse” Y.B.zeldovich & V. S. Popov (1971)
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Hydrogen-like atom from Dirac equation

PG et . Coulomb potential
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: 7o IS scale invariant
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“Atomic collapse” Y.B.zeldovich & V. S. Popov (1971)
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Hydrogen-like atom from Dirac equation

a-p+ pm

Zo

r i

P(r) = Ep(T)

Coulomb potential
IS scale invariant

e 2>137 is not yet achieved with a single nucleus

but may be realized by colliding two heavy nuclei
W. Greiner, B. Muller & J. Rafelski, “Quantum Electrodynamics of Strong Fields”
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Hydrogen-like atom from Dirac equation

PG et . Coulomb potential
&- P+ pm (7)) = By(7) ot
T IS scale invariant

e 2>137 is not yet achieved with a single nucleus

but may be realized by colliding two heavy nuclei
W. Greiner, B. Muller & J. Rafelski, “Quantum Electrodynamics of Strong Fields”

e2
h((vFﬂ
“superheavy nucleus” can be realized
by a charged impurity with Z~0O(1) on graphene

V. M. Pereira, J. Nilsson & A. H. Castro Neto, PRL (2007)
A. V. Shytov, M. |. Katsnelson & L. S. Levitov, PRL (2007)

~ O(1)

e Because ve/c~0(0.01), aeg =



Graphene

2D massless Dirac equation with a charged impurity
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Graphene

2D massless Dirac equation with a charged impurity

Z(Xeff_

G- $(7) = By ()

r

Scale invariance is broken by short-range B.C.
down to discrete scale invariance for Zaes>1

E Infinite beund-states resonances
“Atomic collapse resonances”
= DoS peaks probed by STM

continuum



Graphene e

Scale invariance is broken by short-range B.C.
down to discrete scale invariance for Zaes>1

Infinite bound-states resonances

e . “Atomic collapse resonances”
. F. Crommie et al.
Science 340, 734 (2013) = DoS peaks probed by STM
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Cond-mat realization of “superheavy nucleus”



Y. Nishida, Phys. Rev. B 90, 165414 (2014); Phys. Rev. B 94, 085430 (2016)



Charge distribution of electrons n(r) = Z e (7)|°

E<LO

Y. Nishida, Phys. Rev. B 90, 165414 (2014); Phys. Rev. B 94, 085430 (2016)
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e Scale invariance = n(r) :® Power law

Y. Nishida, Phys. Rev. B 90, 165414 (2014); Phys. Rev. B 94, 085430 (2016)



Charge distribution of electrons n(r) = )  |¢p(7)|?

E<LO

e Scale invariance = n(r) :® Power law

 Discrete scale invariance = n(r) ==

Power law + log-periodic oscillation

Y. Nishida, Phys. Rev. B 90, 165414 (2014); Phys. Rev. B 94, 085430 (2016)



Power law + log-periodic oscillation
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Y. Nishida, Phys. Rev. B 90, 165414 (2014); Phys. Rev. B 94, 085430 (2016)



Vacuum polarization 17/18

Comparison to lattice data for Zaer=4/3
(exact diagonalization on honeycomb lattice with 124x124 sites)
V. M. Pereira, J. Nilsson & A. H. Castro Neto, PRL (2007)
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* Envelop fits well our prediction
but fast oscillation exists with its origin unknown



Summary and problems i

1. Introduction
e Efimov effect & discrete scale invariance

2. Charged analog in non-relativistic system
 Efimovian states in hydrogen molecular ion
= Their width and experimental probe?

3. Charged analog in relativistic system

e Atomic collapse resonances
& vacuum polarization in graphene

=> Possibility in heavy-ion collisions?

Suggestions are appreciated!



