



Craig Roberts ... <u>http://inp.nju.edu.cn/</u>

#### Grant no. 12135007



国家自然科学 基金委员会 National Natural Science Foundation of China



#### Emergence of Hadron Mass ... and Structure

- > Standard Model of Particle Physics has one obvious mass-generating mechanism
  - = Higgs Boson ... impacts are critical to evolution of Universe as we know it
- > However, Higgs boson is alone responsible for just ~ 1% of the visible mass in the Universe

EHM

- Proton mass budget ... only 9 MeV/939 MeV is directly from Higgs
- Evidently, Nature has another very effective mechanism for producing mass:

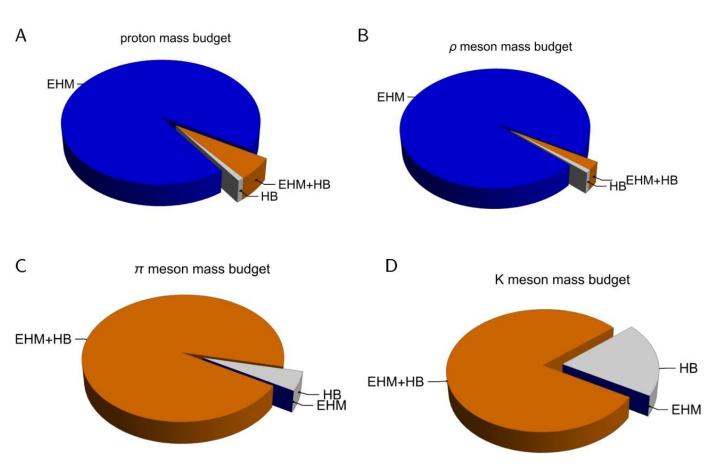
**Emergent Hadron Mass (EHM)** 

✓ Alone, it produces 94% of the proton's mass —

 Remaining 5% is generated by constructive interference between EHM and Higgs-boson - proton mass budget

Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"




EHM+HB

### **Emergence of Hadron Mass - Basic Questions**

- > What is the origin of EHM?
- Does it lie within QCD?
- What are the connections with ...
  - Gluon and quark confinement?
  - Dynamical chiral symmetry breaking (DCSB)?
  - Nambu-Goldstone modes =  $\pi \& K$ ?
- What is the role of Higgs in modulating observable properties of hadrons?
  - Without Higgs mechanism of mass generation, π and K would be indistinguishable
- What is and wherefrom mass?

Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"

Proton and ho-meson mass budgets are practically identical



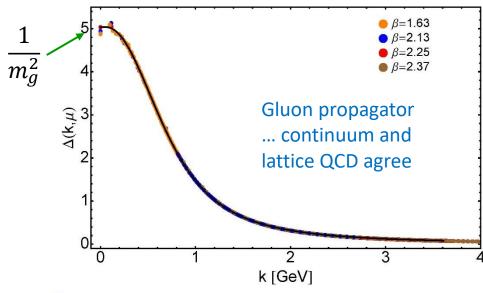
 $\pi\text{-}$  and K-meson mass budgets are essentially/completely different from those of proton and  $\rho$ 



# GENESIS



Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons


### Modern Understanding Grew Slowly from *Question Content* Origins

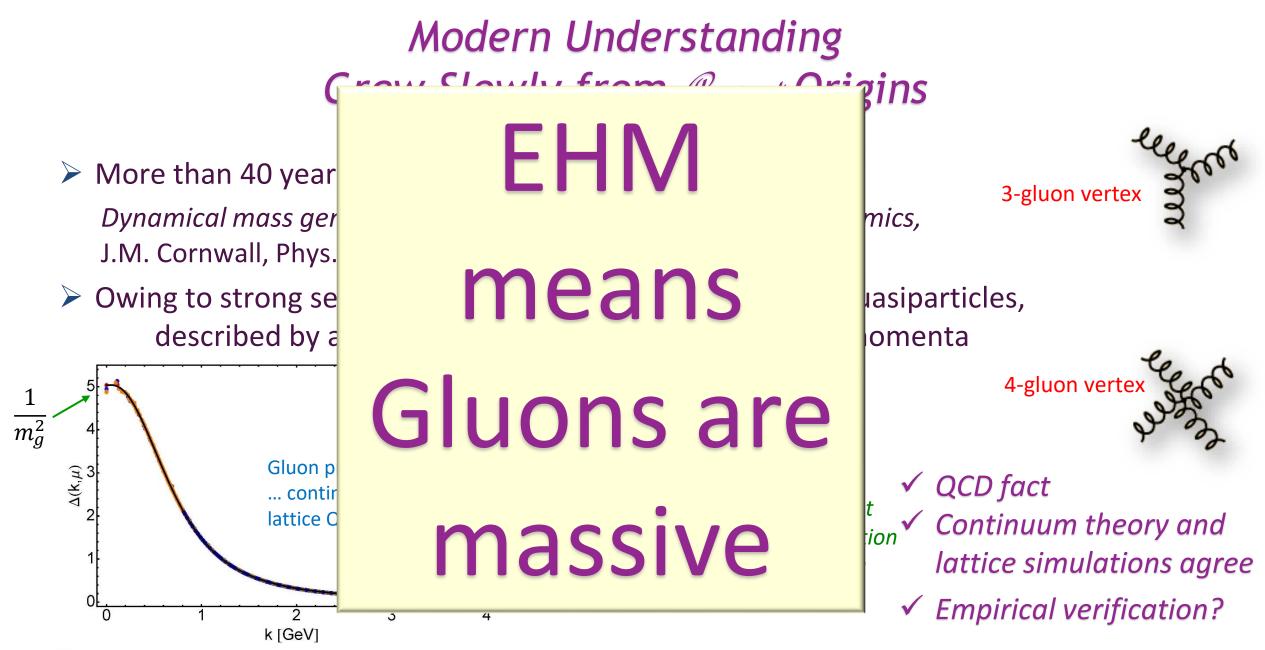
#### More than 40 years ago

Dynamical mass generation in continuum quantum chromodynamics, J.M. Cornwall, Phys. Rev. D **26** (1981) 1453 ...  $\sim 1070$  citations

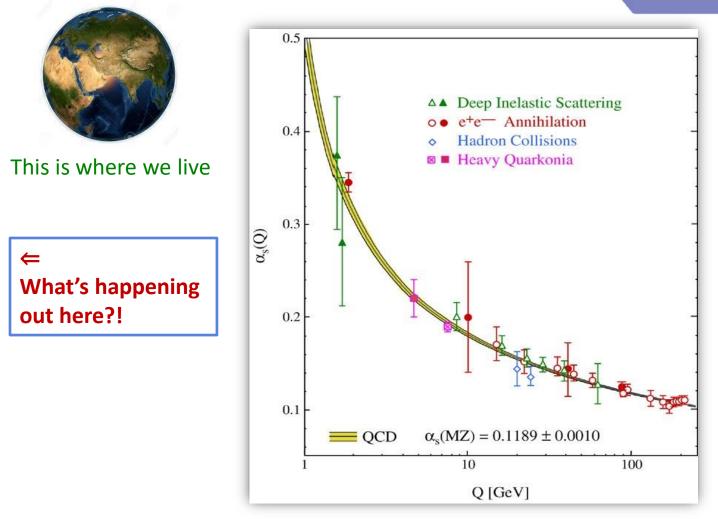


➤ Owing to strong self-interactions, gluon partons ⇒ gluon quasiparticles, described by a mass function that is large at infrared momenta




Truly mass from nothing An interacting theory, written in terms of massless gluon fields, produces dressed gluon fields that are characterised by a mass function that is large at infrared momenta

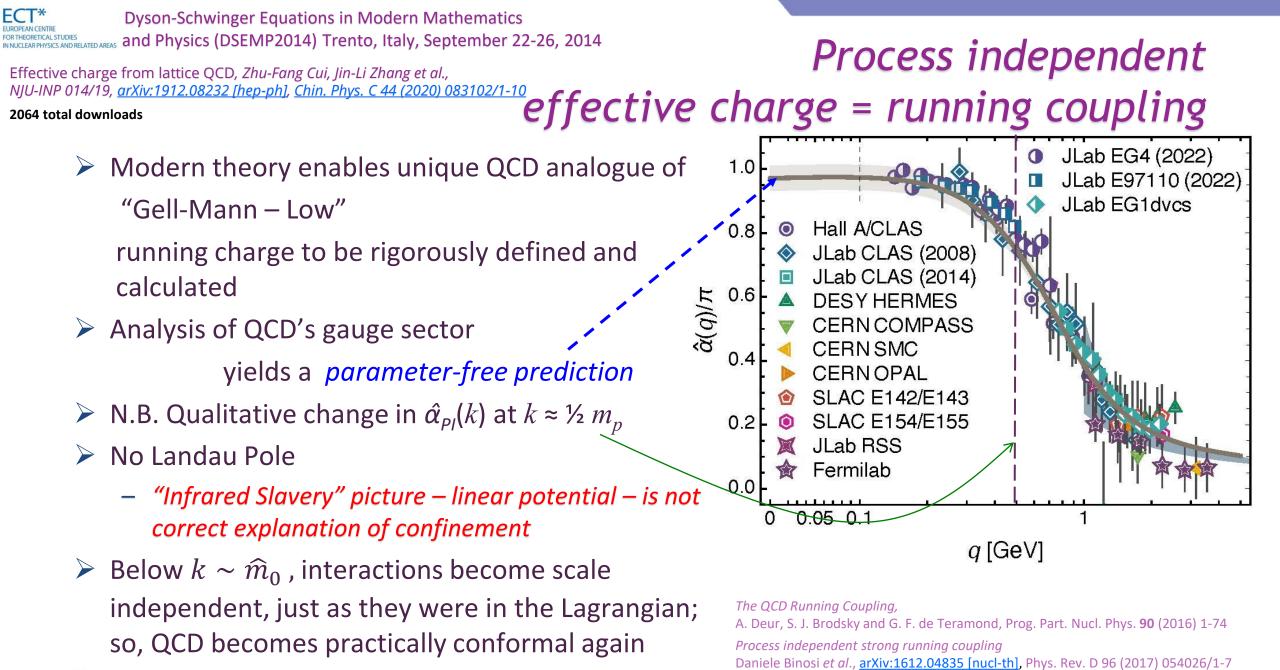



 ✓ QCD fact
 ✓ Continuum theory and lattice simulations agree

✓ Empirical verification?

Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"




Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"



# OCD's Running Coupling

Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"





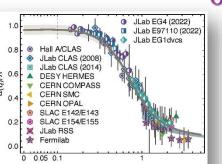
Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"



### EHM Basics

> Absent Higgs boson couplings, the Lagrangian of QCD is scale invariant

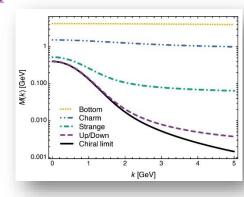
≻ Yet ...


- Massless gluons become massive
- A momentum-dependent charge is produced
- Massless quarks become massive
- EHM is expressed in
  - EVERY strong interaction observable
- Challenge to Theory =

Elucidate all observable consequences of these phenomena and highlight the paths to measuring them

Challenge to Experiment =

Test the theory predictions so that the boundaries of the Standard Model can finally be drawn


Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"



q [GeV]

PILLARS OF EHM

THREE



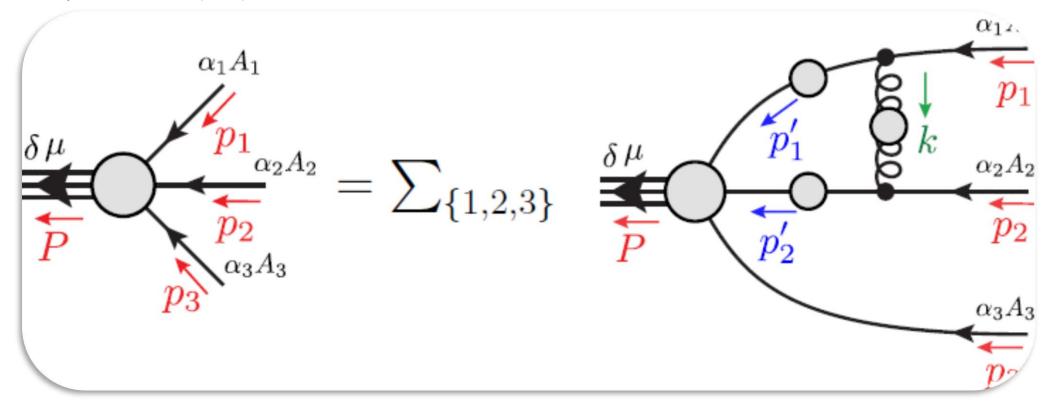
k [GeV]

β=2.13
 β=2.25



# EHM as the Driver of Clustering within hadrons

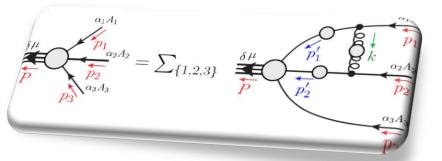
Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"




## Exposing & Charting EHM

- Proton was discovered 100 years ago
  - It is stable; hence, an ideal target in experiments
- But just as studying the hydrogen atom ground state didn't give us QED, focusing on the ground state of only one form of hadron matter will not solve QCD
- New era is dawning
  - High energy + high luminosity
  - $\Rightarrow$  science can move beyond the monomaniacal focus on the proton
- Precision studies of the structure of
  - Nature's most fundamental Nambu-Goldstone bosons ( $\pi \& K$ ) will become possible
  - Baryon excited states
    - ✓ Baryons are the most fundamental three-body systems in Nature
    - ✓ If we don't understand how QCD, a <u>Poincaré-invariant quantum field theory</u>, builds each of the baryons in the complete spectrum, then we don't understand Nature.

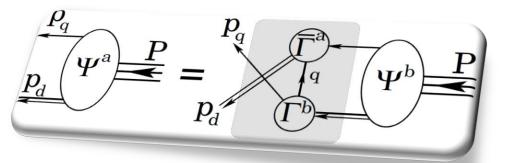



Nucleon mass from a covariant three-quark Faddeev equation G. Eichmann *et al.*, Phys. Rev. Lett. 104 (2010) 201601



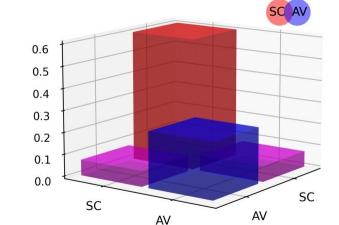
# Faddeex Equation for Baryons




Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"



### **Structure of Baryons**


- Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks
- Direct solution of Faddeev equation using rainbow-ladder truncation is now possible, but numerical challenges remain





Solution delivers Structure of Baryons Poincaré-covariant proton wave function

- Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks
- Direct solution of Faddeev equation using rainbow-ladder truncation is now possible, but numerical challenges remain
- > For many/most applications, diquark approximation to quark+quark scattering kernel is used
- > **Prediction**: owing to EHM phenomena, strong diquark correlations exist within baryons
  - proton and neutron ... both scalar and axial-vector diquarks are present



- CSM prediction = presence of axialvector (AV) diquark correlation in the proton
- ✓ AV Responsible for  $\approx$  40% of proton charge

23 September 2019 — 27 September 2019

DIQUARK CORRELATIONS IN HADRON PHYSICS: ORIGIN, IMPACT AND EVIDENCE

Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularized QCD have provided strong indications that soft quarkquark (diquark) correlations play a crucial role in hadron physics.

- Theory predicts experimental observables that would constitute unambiguous measurable signals for the presence of diquark correlations.
- Some connect with spectroscopy of exotics
  - $\checkmark$  tetraquarks and pentaquarks
- Numerous observables connected with structure of conventional hadrons, e.g.
  - ✓ existence of zeros in *d*-quark contribution to proton Dirac and Pauli form factors
  - ✓ Q<sup>2</sup>-dependence of nucleon-to-resonance transition form factors
  - $\checkmark$  *x*-dependence of proton structure functions
  - deep inelastic scattering on nuclear targets (nDIS) ... proton production described by direct knockout of diquarks, which subsequently form into new protons

Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"



### Diquarks - Facts

Nuclear Physics Volume 116, January 2021, 103835

Progress in Particle and

Review

Diquark correlations in hadron physics: Origin, impact and evidence

M.Yu. Barabanov <sup>1</sup>, M.A. Bedolla <sup>2</sup>, W.K. Brooks <sup>3</sup>, G.D. Cates <sup>4</sup>, C. Chen <sup>5</sup>, Y.
Chen <sup>6, 7</sup>, E. Cisbani <sup>8</sup>, M. Ding <sup>9</sup>, G. Eichmann <sup>10, 11</sup>, R. Ent <sup>12</sup>, J. Ferretti <sup>13</sup>
∞, R.W. Gothe <sup>14</sup>, T. Horn <sup>15, 12</sup>, S. Liuti <sup>4</sup>, C. Mezrag <sup>16</sup>, A. Pilloni <sup>9</sup>, A.J.R.
Puckett <sup>17</sup>, C.D. Roberts <sup>18, 19</sup> ∧ ∞ ... B.B. Wojtsekhowski <sup>12</sup> ∞

#### Nucleon axial-vector and pseudoscalar form factors and PCAC relations

Chen Chen (陈晨),<sup>1,2,3,4,\*</sup> Christian S. Fischer,<sup>3,4,†</sup> Craig D. Roberts,<sup>5,6,‡</sup> and Jorge Segovia,<sup>7,6,§</sup> <sup>1</sup>Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China <sup>2</sup>Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China <sup>3</sup>Institut für Theoretische Physik, Justus-Liebig-Universität Gießen, D-35392 Gießen, Germany <sup>4</sup>Helmholtz Forschungsakademie Hessen für FAIR (HFHF), GSI Helmholtzzentrum für Schwerionenforschung, Campus Gießen, D-35392 Gießen, Germany <sup>5</sup>School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China <sup>6</sup>Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China <sup>7</sup>Dpto. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, E-41013 Sevilla, Spain



### Nucleon Electroweak Form Factors and Pion-Nucleon Coupling

- Symmetry preserving current for realistic nucleon = quark + nonpointlike diquark
- Probe strikes
  - ➢ Quark − (1)
  - Diquark elastic (2)
  - Diquark transition (3)
  - Quark in-flight (4)
  - ➢ Seagull terms − (5) & (6)
- Guarantees PCAC and all related identities
- Parameter-free predictions

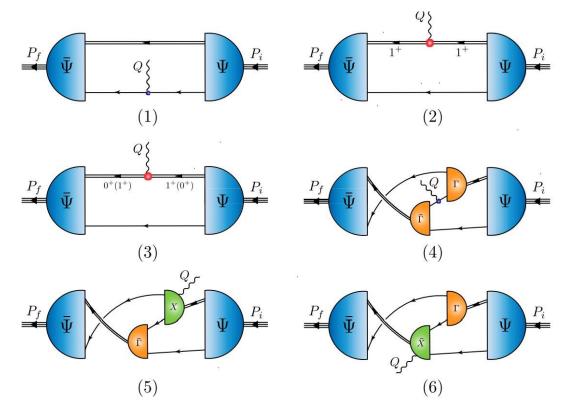
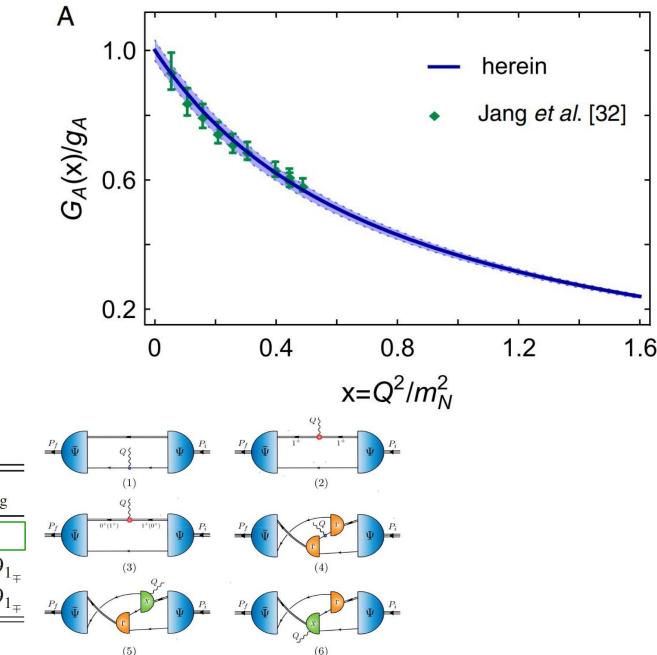



FIG. 3. Axial or pseudoscalar currents that ensure PCAC for on-shell baryons that are described by the Faddeev amplitudes produced by the equation depicted in Fig. 2. Single line: dressedquark propagator; undulating line: the axial or pseudoscalar current;  $\Gamma$ : diquark correlation amplitude; double line: diquark propagator; and  $\chi$ : seagull terms. Diagram 1 is the top-left image, the top-right is Diagram 2, and so on, with Diagram 6 being the bottom-right image.




### Nucleon axial form factor: $G_A(Q^2)$

- Parameter-free continuum quark+diquark prediction compared with up-to-date lattice result
- ✓ Mean  $\chi^2$  = 0.27
- ✓  $Q^2$  reach of continuum prediction is unlimited
  - ✓ Now have results to 10 GeV<sup>2</sup>
- ✓ "Precision" lattice result is constrained to the small Q<sup>2</sup>-window shown
- ✓ Contribution dissection:

|          | $\langle J  angle^S_{ m q}$ | $\langle J  angle_{ m q}^A$ | $\langle J  angle_{ m qq}^{AA}$ | $\langle J  angle_{ m qq}^{SA+AS}$ | $\langle J  angle_{ m ex}$ | $\langle J  angle_{ m sg}$ |
|----------|-----------------------------|-----------------------------|---------------------------------|------------------------------------|----------------------------|----------------------------|
| $G_A(0)$ | $0.71_{4_{\pm}}$            | 0.0642+                     | 0.0255+                         | 0.13 <sub>0<sub>∓</sub></sub>      | $0.072_{32_{+}}$           | 0                          |
|          |                             |                             |                                 | 0.13 <sub>0<sub>∓</sub></sub>      |                            | -0.191                     |
|          |                             |                             | $0.025_{5_{\pm}}^{-}$           |                                    | $0.22_{4_{\pm}}^{-}$       | -0.19 <sub>1</sub>         |

Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"



Eur. Phys. J. A (2022) 58:206 https://doi.org/10.1140/epja/s10050-022-00848-x

**Regular Article - Theoretical Physics** 



#### Nucleon axial form factor at large momentum transfers

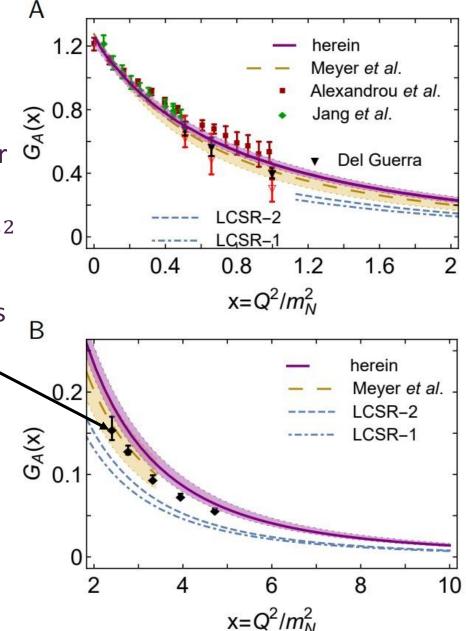
#### Chen Chen<sup>1,2,a</sup>, Craig D. Roberts<sup>3,4,b</sup>

<sup>1</sup> Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei 230026, Anhui, China

<sup>2</sup> Peng Huanwu Center for Fundamental Theory, Hefei 230026, Anhui, China

<sup>3</sup> School of Physics, Nanjing University, Nanjing 210093, Jiangsu, China

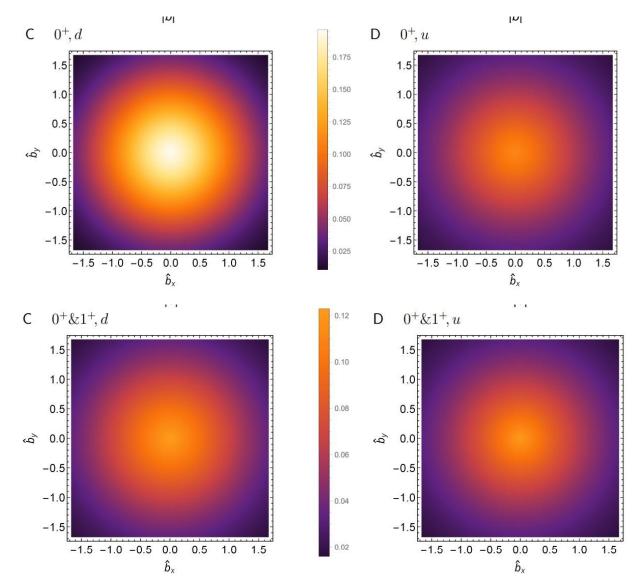
<sup>4</sup> Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, Jiangsu, China


Received: 26 June 2022 / Accepted: 4 October 2022



### Large Q<sup>2</sup> Nucleon Axial Form Factor

- $\blacktriangleright$  Parameter-free CSM predictions to  $Q^2 = 10 m_p^2$
- > One other calculation, *viz*. LCSRs using different models for  $\Im^{2}$  proton DA ... Only available on  $\Omega^{2}$  to 1
- $\succ$  CSM prediction agrees with available data: small & large  $Q^2$
- $\blacktriangleright$  Large  $Q^2$  data from CLAS [K. Park *et al.*, Phys. Rev. C 85] (2012) 035208], threshold pion electroproduction, extends  $Q^2 \approx 5 m_p^2$ 
  - $\checkmark$  This technique could be used to reach higher  $Q^2$
- ✓ Regarding oft-used dipole Ansatz,
  - ✓ Fair representation of  $G_A(x)$  on  $x \in [0, 3]$  = fitting domain
  - ✓ But outside fitted domain, quality of approximation deteriorates quickly
  - $\checkmark$  dipole overestimates true result by 56% at x = 10


Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diguark Picture of Baryons"



### Large Q<sup>2</sup> Nucleon Axial Form Factor

- Light-front transverse density profiles
- Omitting axialvector diquarks
  - magnitude of the d quark contribution to GA is just 10% of that from the u quark
  - ✓ d quark is also much more localized  $r_{A_d}^{\perp} \approx 0.5 r_{A_u}^{\perp}$
- Working with realistic axialvector diquark fraction
  - ✓ d and u quark transverse profiles are quite similar

$$r_{A_d}^{\perp} \approx 0.9 \; r_{A_u}^{\perp}$$



### **Proton Spin Structure**

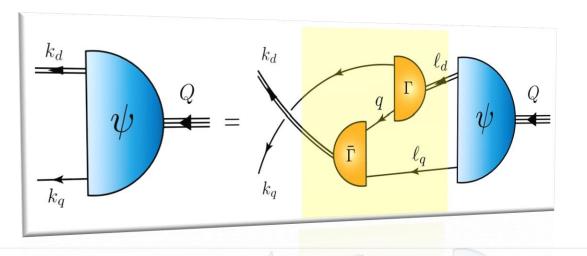
- Flavour separation of proton axial charge
- d-quark receives large contribution from probe+quark in presence of axialvector diquark

$$\circ \frac{g_A^d}{g_A^u} = {}^{0^+ \& 1^+} -0.32(2)$$

$$\circ \frac{g_A^a}{g_A^u} = {}^{0^+ \text{ only }} -0.054(13)$$

**Table 1** Diagram and flavour separation of the proton axial charge:  $g_A^u = G_A^u(0), g_A^d = G_A^d(0); g_A^u - g_A^d = 1.25(3)$ . The listed uncertainties in the tabulated results reflect the impact of  $\pm 5\%$  variations in the diquark masses in Eq. (3),  $e.g. \ 0.88_{6_{\mp}} \Rightarrow 0.88 \mp 0.06$ .

| $\langle J \rangle^S_{\mathrm{q}}$ | $\langle J  angle_{ m q}^{A}$ | $\langle J \rangle^{AA}_{\mathrm{qq}} \langle J \rangle^{\{SA\}}_{\mathrm{qq}}$ | $\langle J \rangle_{\rm ex}^{SS}$ | $\langle J \rangle_{\rm ex}^{\{SA\}}$ | $\langle J \rangle_{\rm ex}^{AA}$ |
|------------------------------------|-------------------------------|---------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|
| $g_A^u = 0.88_{6_x}$               | $-0.08_{0_{+}}$               | $0.03_{0_{\pm}} 0.08_{0_{\pm}}$                                                 | 0                                 | $\approx 0$                           | $0.03_{\pm 1}$                    |
| $-g^d_A \mid 0$                    | $0.16_{0\pm}$                 | $0.03_{0\pm} \frac{0.08_{0\mp}}{0.08_{0\mp}}$                                   | $0.05_{1\pm}$                     | $\approx 0$                           | $0.01 \pm 0$                      |


Probability that scalar diquark only picture of proton is consistent with data = 1/7,100,000

- ► Experiment:  $\frac{g_A^a}{g_A^u} = {}^{0^+ \& 1^+} 0.27(4) \Leftarrow$  strong pointer to importance of AV correlation
- → Hadron scale:  $g_A^u + g_A^d (+g_A^s = 0) = 0.65(2) \Rightarrow$  quarks carry 65% of the proton spin
- Poincaré-covariant proton wave function: remaining 35% lodged with quark+diquark orbital angular momentum
- Extended to entire octet of ground-state baryons: dressed-quarks carry 50(7)% of proton spin at hadron scale

Contact interaction analysis of octet baryon axialvector and pseudoscalar form factors, Peng Cheng (程鹏), Fernando E. Serna, Zhao-Qian Yao (姚照千) et al., NJU-INP 063/22, e-Print: 2207.13811 [hep-ph], <u>Phys. Rev. D</u> **106**,(2022) 054031

Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"

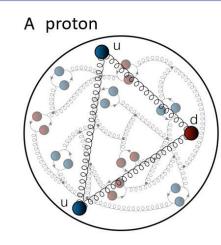




Preprint nos. NJU-INP 057/22, USTC-ICTS/PCFT-22-11

### Composition of low-lying $J = \frac{3}{2}^{\pm} \Delta$ -baryons

Langtian Liu,<sup>1,2</sup> Chen Chen,<sup>3,4,\*</sup> Ya Lu,<sup>1,2,5</sup> Craig D. Roberts,<sup>1,2,†</sup> and Jorge Segovia<sup>6,2</sup>

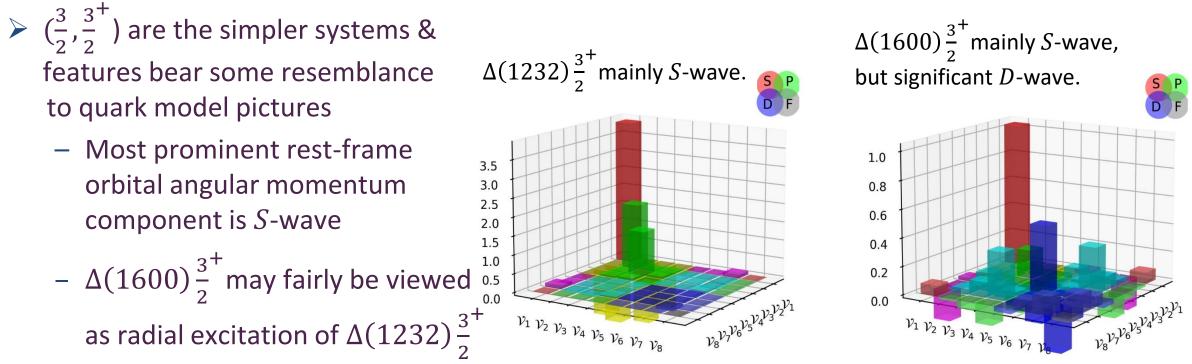

<sup>1</sup>School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
 <sup>2</sup>Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China
 <sup>3</sup>Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China
 <sup>4</sup>Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China
 <sup>5</sup>Department of Physics, Nanjing Tech University, Nanjing 211816, China
 <sup>6</sup>Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, E-41013 Sevilla, Spain (Dated: 2022 March 22)



### **Baryon Structure**

- ➢ Poincaré covariance ⇒ irrespective of quark model assignments  $n^{2s+1}\ell_J$ , every hadron contains orbital angular momentum, e.g.,
  - $\pi$  contains two S-wave components and two P-wave components
  - Few systems are simply radial excitations of another
- > No separation of J into L + S is Poincaré invariant
  - Consequently, e.g., negative parity states are <u>not</u> simply orbital angular momentum excitations of positive parity ground states
- In quantum field theory, there is no direct connection between parity and orbital angular momentum
  - Parity is a Poincaré invariant quantum number
  - L is not Poincaré invariant = value depends on the observer's frame of reference
- QCD structure of hadrons mesons and baryons is far richer than can be produced by quark models, relativized or not
  - Baryons are the most fundamental three-body systems in Nature
  - If we don't understand how QCD, a <u>Poincaré-invariant quantum field theory</u>, builds each of the baryons in the complete spectrum, then we don't understand Nature.
     Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"






# Composition of low-lying $J=\frac{3^{\pm}}{2} \Delta$ -baryons

Poincaré-covariant quark+diquark Faddeev equation

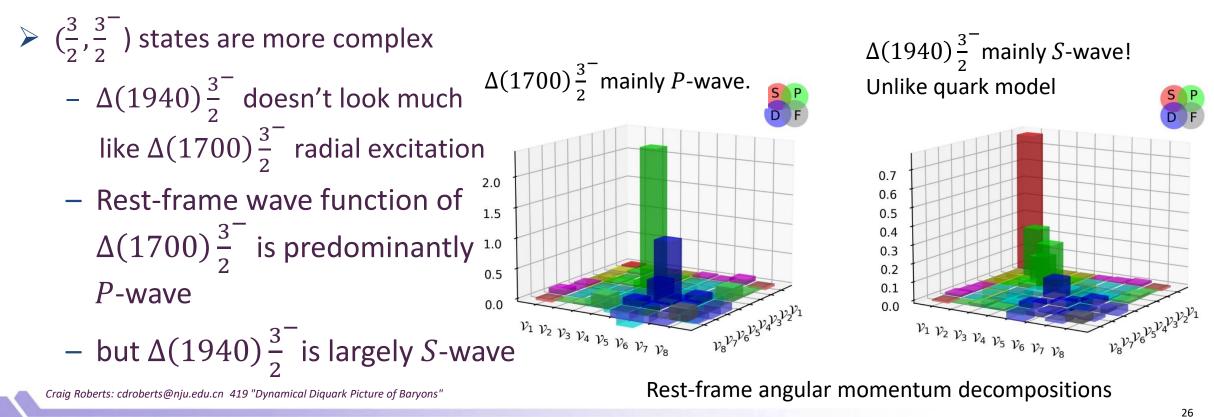
 $\Rightarrow$  insights into the structure of four lightest  $(I, J^P) = (\frac{3}{2}, \frac{3^{\pm}}{2})$  baryon multiplets.

Prediction: Whilst these systems can contain isovector-axialvector (1,1<sup>+</sup>) and isovector-vector (1,1<sup>-</sup>) diquarks, one may neglect the latter and still arrive at a reliable description.

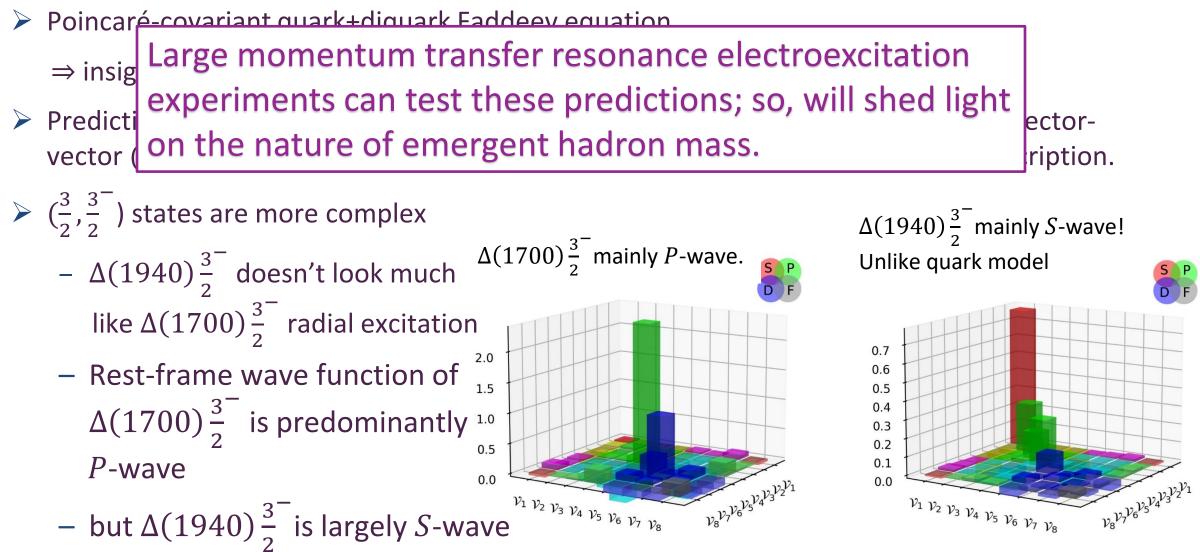


Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"

Rest-frame angular momentum decompositions

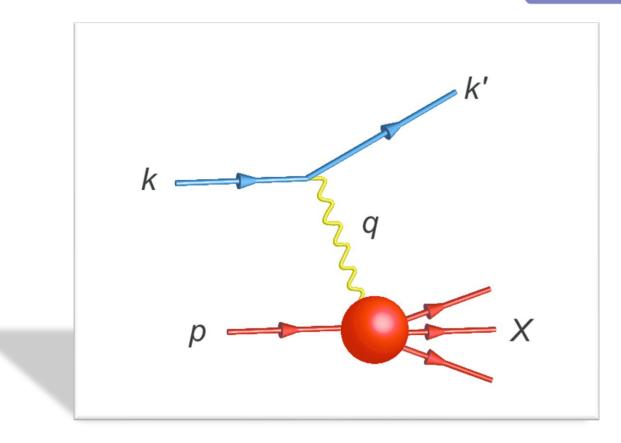



# Composition of low-lying $J = \frac{3^{\pm}}{2} \Delta$ -baryons


Poincaré-covariant quark+diquark Faddeev equation

 $\Rightarrow$  insights into the structure of four lightest  $(I, J^P) = (\frac{3}{2}, \frac{3^{\pm}}{2})$  baryon multiplets.

Prediction: Whilst these systems can contain isovector-axialvector (1,1<sup>+</sup>) and isovector-vector (1,1<sup>-</sup>) diquarks, one may neglect the latter and still arrive at a reliable description.




# Composition of low-lying $J=\frac{3^{\pm}}{2} \Delta$ -baryons



Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"

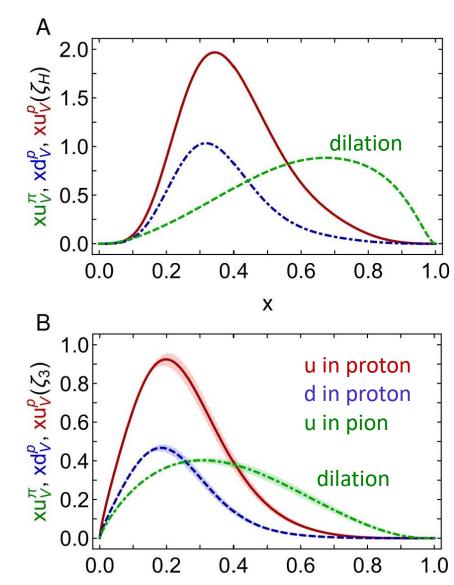
#### Rest-frame angular momentum decompositions



# **Parton Distribution Functions**



Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"

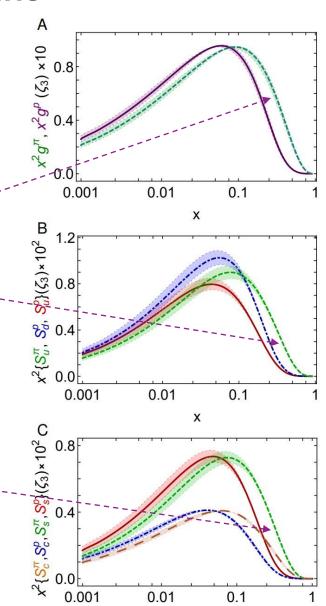

### Proton and pion distribution functions in counterpoint

Proton and pion distribution functions in counterpoint, Ya Lu (陆亚) et al., NJU-INP 056/22, e-Print: 2203.00753 [hep-ph], Phys. Lett. B 830 (2022) 137130

- Symmetry-preserving analyses using continuum Schwinger function methods (CSMs) deliver hadron scale DFs that agree with QCD constraints
- > Valence-quark degrees-of-freedom carry all hadron's momentum at  $\zeta_H$ :  $\langle x \rangle_{u_p}^{\zeta_H} = 0.687$ ,  $\langle x \rangle_{d_n}^{\zeta_H} = 0.313$ ,  $\langle x \rangle_{u_\pi}^{\zeta_H} = 0.5$
- Diquark correlations in proton, induced by EHM

 $\Rightarrow u_V(x) \neq 2d_V(x)$ 

- Proton and pion valence-quark DFs have markedly different behaviour
  - $u^{\pi}(x; \zeta_H)$  is Nature's most dilated DF
  - i. "Obvious" because  $(1 x)^2$  vs.  $(1 x)^3$  behaviour & preservation of this unit difference under evolution
  - ii. Also "hidden" = strong EHM-induced broadening




### Proton and pion distribution functions in counterpoint - glue and sea

CSM prediction for glue-in-pion DF confirmed by recent IQCD simulation

[*Regarding the distribution of glue in the pion,* Lei Chang (常雷) and Craig D Roberts, e-Print: 2106.08451 [hep-ph], Chin. Phys. Lett. 38 (8) (2021) 081101/1-6]

- Solution Glue-in- $\pi$  DF possess significantly more support on the valence domain ( $x \ge 0.2$ ) than the glue-in-p DF
- Sea-in-π DF possess significantly more support on the valence --domain than sea-in-p DFs.
- s and c sea DFs are commensurate in size with those of the lightquark sea DFs
- For s-and c-quarks, too, the pion DFs possess significantly greater support on the valence domain than the kindred proton DFs.
- These outcomes are measurable expressions of EHM



Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"

х

### **Diquarks & Deep Inelastic Scattering**

- The ratio of neutron and proton structure functions at large x is keen discriminator between competing pictures of proton structure
- > Example:
  - Only scalar diquark in the proton (no axial-vector):  $\lim_{x \to 1} \frac{F_2^n(x)}{F_2^p(x)} = \frac{1}{4}$
  - No correlations in the proton wave function (SU(4) spin-flavour)  $\lim_{x \to 1} \frac{F_2^n(x)}{F_2^p(x)} = \frac{2}{3}$
- Experiments have been trying to deliver reliable data on this ratio for fifty years!
- MARATHON a more-than ten-year effort, using a tritium target at JLab, has delivered precise results

D. Abrams, et al., Measurement of the Nucleon Fn2/Fp2 Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment – arXiv:2104.05850 [hep-ex], Phys. Rev. Lett. (2022) in press.

Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"

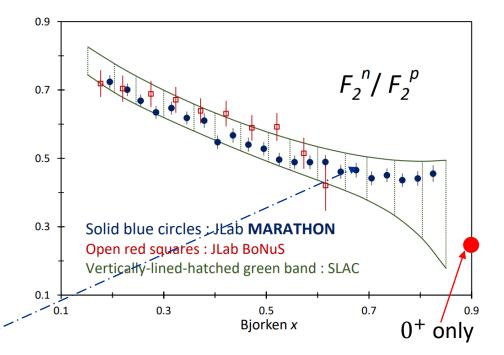



FIG. 2: The  $F_2^n/F_2^p$  ratio plotted versus the Bjorken x from the JLab MARATHON experiment. Also shown are JLab Hall B BoNuS data [56], and a band based on the fit of the SLAC data as provided in Ref. [46], for the MARATHON kinematics  $[Q^2 = 14 \cdot x \text{ (GeV}/c)^2]$  (see text). All three experimental data sets include statistical, point to point systematic, and normalization uncertainties.

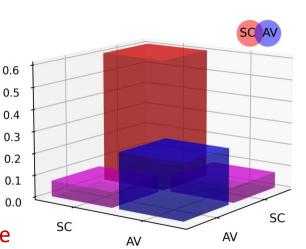
### **Neutron/Proton structure function ratio**

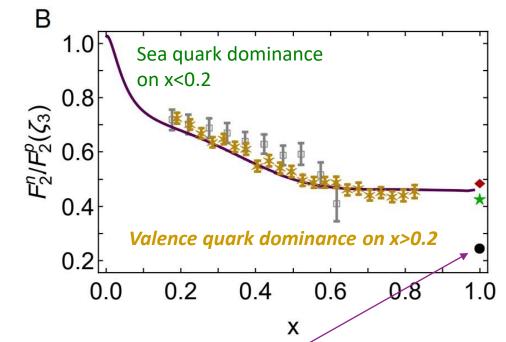
- Ratio 1<sup>+</sup>/0<sup>+</sup> diquarks in proton wave function is measure of EHM
- Structure function ratio is clear window onto  $d_V(x)/u_V(x)$

 $\frac{F_2^n(x;\zeta)}{F_2^p(x;\zeta)} = \frac{\mathcal{U}(x;\zeta) + 4\mathcal{D}(x;\zeta) + \Sigma(x;\zeta)}{4\mathcal{U}(x;\zeta) + \mathcal{D}(x;\zeta) + \Sigma(x;\zeta)}$ 

 $U(x;\zeta) = u(x;\zeta) + \bar{u}(x;\zeta), D(x;\zeta) = d(x;\zeta) + \bar{d}(x;\zeta)$  $\Sigma(x;\zeta) = s(x;\zeta) + \bar{s}(x;\zeta) + c(x;\zeta) + \bar{c}(x;\zeta)$ 

#### Comparison with MARATHON data


[D. Abrams, *et al.*, Measurement of Nucleon  $F_2^n/F_2^p$ Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment – arXiv:2104.05850 [hep-ex], Phys. Rev. Lett. (2022) *in press*]

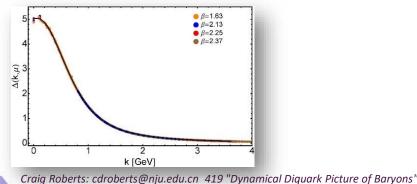

Agreement with modern data on entire x-domain – parameter-free prediction

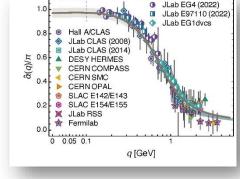
Walence quark ratio in the proton, Zhu-Fang Cui, (崔著钫), Fei Gao (高飞), Daniele Binosi, Lei Chang (常雷), Craig D. Roberts and Sebastian M. Schmidt, <u>NJU-INP 049/21</u>, e-print: <u>2108.11493</u>
[hep-ph], Chin. Phys. Lett. Express **39** (04) (2022) 041401/1-5: <u>Express Letter</u>

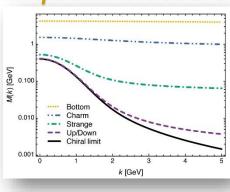
Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"

- CSM prediction = presence of axialvector diquark correlation in the proton
- ✓ Responsible for ≈ <sup>0.</sup> 40% of proton charge







### Probability that scalar diquark only models of nucleon might be consistent with available data is 1/141,000


### Expanding array of parameter-free predictions, including

- Transition form factors: γ \* + p → Δ(1232), Δ(1600), Ya Lu, Chen Chen, Zhu-Fang Cui, Craig D Roberts, Sebastian M Schmidt, Jorge Segovia and Hong Shi Zong, arXiv:1904.03205 [nucl-th], Phys. Rev. D 100 (2019) 034001/1-13
  - Predictions confirmed in recent months following analysis of large-Q<sup>2</sup> CLAS data
- Nucleon-to-Roper electromagnetic transition form factors at large-Q<sup>2</sup>, Chen Chen et al., <u>arXiv:1811.08440 [nucl-th]</u>, Phys. Rev. D 99 (2019) 034013/1-13
- Nucleon elastic form factors at accessible large spacelike momenta, Zhu-Fang Cui et al., NJU-INP 017/20, arXiv:2003.11655 [hep-ph], Phys. Rev. D 102 (2020) 014043/1-14
- Dynamical diquarks in the γ\*p → N(1535)1/2- transition, Khépani Raya et al., NJU-INP 046/21, arXiv:2108.02306 [hep-ph], Eur. Phys. J. A 57 (2021) 266/1-16
- Revealing pion and kaon structure via generalised parton distributions, Khépani Raya et al., NJU-INP 051/21, e-Print: 2109.11686 [hep-ph], Chin. Phys. C 46 (01) (2022) 013107/1-22
- Proton and pion distribution functions in counterpoint, Ya Lu (陆亚) et al., NJU-INP 056/22, e-Print: 2203.00753 [hep-ph], Phys. Lett. B 830 (2022) 137130/1-7

#### Validate the EHM paradigm & consequent appearance of diquark clusters









### Emergent Hadron Mass



- > QCD is unique amongst known fundamental theories of natural phenomena
  - Degrees-of-freedom used to express the scale-free Lagrangian are not directly observable
  - Massless gauge bosons become massive, with no "human" interference
  - Gluon mass ensures a stable, infrared completion of the theory through appearance of a running coupling that saturates at infrared momenta, being everywhere finite
  - Massless fermions become massive, producing
    - Massive baryons and simultaneously Massless mesons
- > Emergent features of QCD are expressed in every strong interaction observable
- They can also be revealed via
  - EHM interference with Nature's other known source of mass = Higgs
- High energy and high luminosity facilities are the key to validating these concepts proving QCD to be 1<sup>st</sup> well-defined four-dimensional quantum field theory ever contemplated
- > This may open doors that lead far beyond the Standard Model

### Emergent Hadron Mass



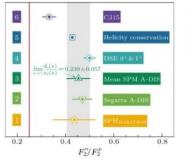
- > QCD is unique amongst known fundamental theories of natural phenomena
  - Degrees-of-freedom used to express the scale-free Lagrangian are not directly observable
  - Massless gauge bosons become massive, with no "human" interference
  - Gluon mass ensures a stable, infrared completion of the theory through appearance of a running coupling that saturates at infrared momenta, being everywhere finite
  - Massless fermions become massive, producing
    - Massive baryons and simultaneously Massless m
- Emergent features of QCD are expressed in every stron;
- They can also be revealed via



EHM interference with Nature's other known source of mass = Higgs

High ener There are theories of many things, proving C
 This may But is there a theory of everything?

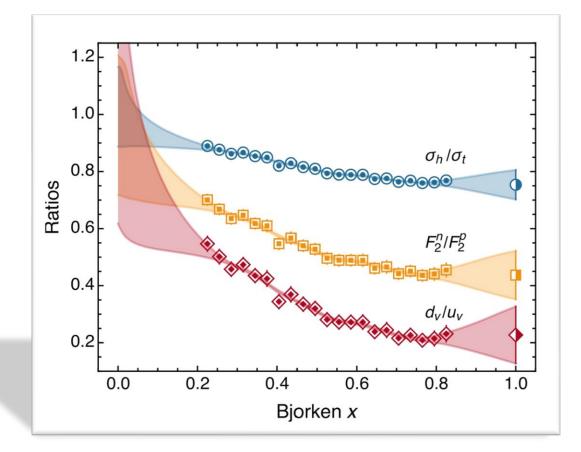
ntemplated




## $\mathcal{L}_{Nature} = ?$

### There are theories of many things, But is there a theory of everything?




Clustering as a Window on the Hierarchical 37 Structure of Quantum Systems (35)



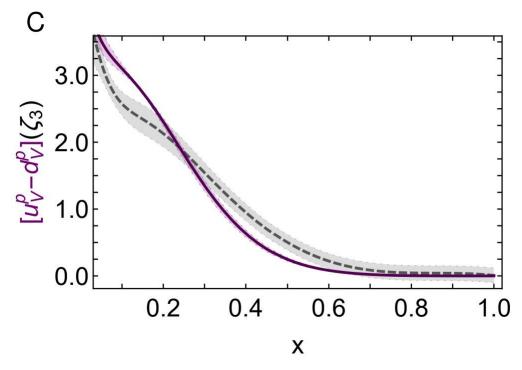
#### Valence Quark Ratio in the Proton ∂ Zhu-Fang Cui, Fei Gao, Daniele Binosi, Lei Chang, Craig D. Roberts, and Sebastian M. Schmidt Chin. Phys. Lett. 2022, 39 (4): 041401 . DOI: 10.1088/0256-307X/39/4/041401 Mark Abstract ■ HTML ■ PDF (571KB)

### MARATHON EXPERIMENT Schlessinger point method

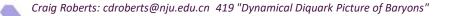
- New mathematical method for interpolation and extrapolation of data
  - based on continued-fraction representation of functions, augmented by statistical sampling
- Delivers model-independent prediction for all ratios
  - No reference to models or physics theories
- Provides benchmark against which all pictures of nucleon structure can be measured
- Probability that scalar diquark only models of nucleon might be consistent with available data is 1/141,000



Craig Roberts: cdroberts@nju.edu.cn 419 "Dynamical Diquark Picture of Baryons"




#### Proton valence-quark DFs: Continuum cf. Lattice


- Owing to difficulties in handling so-called disconnected contributions, the calculation of individual proton valence DFs using lattice-regularised QCD (IQCD) is problematic
- IQCD results are typically only available for isovector distributions, from which disconnected contributions vanish in the continuum limit.
- Comparison of isovector distributions

 $u^p(x;\zeta_3) - d^p(x;\zeta_3)$ 

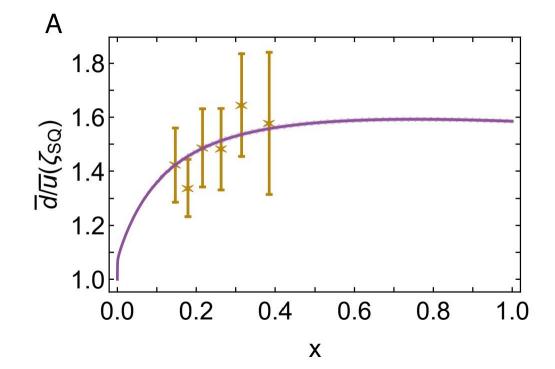
Completely different approaches; yet good agreement, especially since refinements of both calculations may be anticipated.



- ✓ <u>Continuum</u>: Proton and pion distribution functions in counterpoint, Ya Lu (陆亚) et al., NJU-INP 056/22, e-Print: 2203.00753 [hep-ph]
- ✓ <u>Lattice</u>: Nucleon Isovector Unpolarized Parton Distribution in the Physical-Continuum Limit, H.-W. Lin et al., arXiv:2011.14971 [hep-lat]



### Asymmetry of antimatter in the proton


- > Pauli blocking: gluon splitting produces  $d + \overline{d}$  in preference to  $u + \overline{u}$
- Comparison with SeaQuest data

[J. Dove, et al., *The asymmetry of antimatter in the proton*, Nature 590 (7847) (2021) 561–565.]

Gottfried sum rule

$$\int_{0.004}^{0.8} dx \, [\bar{d}(x;\zeta_3) - \bar{u}(x;\zeta_3)] = 0.116(12)$$

Most recent result from global fits [CT18]:
 0.110(80)



- ✓ Proton and pion distribution functions in counterpoint, Ya Lu (陆亚), Lei Chang (常雷), Khépani Raya, Craig D. Roberts and José Rodríguez-Quintero, NJU-INP 056/22, e-Print: 2203.00753 [hep-ph], Phys. Lett. B 830 (2022) 137130/1-7
- ✓ Parton distributions of light quarks and antiquarks in the proton, Lei Chang (常雷), Fei Gao (高飞) and Craig D. Roberts, NJU-INP 055/22, e-Print: 2201.07870 [hep-ph], Phys. Lett. B 829 (2022) 137078/1-7