International Symposium on Clustering as a Window on the Hierarchical Structure of Quantum Systems (CLUSHIQ2022)

Experimental studies of nuclear systems with double strangeness using nuclear emulsion

Junya Yoshida Tohoku University

Hypernuclei: nuclear systems with strangeness

- Baryon-baryon interaction as an extension of the nuclear force
 - Contributions of quark for nuclear force at short range
 - Introducing the 3rd quark, strange, is an effective way

- Precise measurement of hyperon in the core nucleus
- Information source of ΛN , $\Lambda \Lambda$ and ΞN interactions

Production and decay of a double strangeness nuclei

Production and decay of a double strangeness nuclei

Production and decay of a double strangeness nuclei

Evolution of experiments with hybrid emulsion method for double strangeness

6

Experimental apparatus of E07 2016-2017 K1.8 beamline, J-PARC

Emulsion module

Track following for Ξ^{-} stop event search

with dedicated image processing

Automated Track Following https://youtu.be/3fiWI5tDx2U

Detected double strangeness events:

14 events in the former experiments 33 events in J-PARC E07

Systematic analysis of double strangeness system using multiple events

Double Λ hypernucleus

Nyaw, A. N. L. et al.,

Bull. Soc. Photogr. Imag. Japan 30, 22-25 (2020)

A-dependence of $B_{\Lambda\Lambda}$ can be discussed.

 Ξ hypernucleus

Combining experimental data and theoretical calculation,

- p-state: ~1 MeV
- s-state: ~6 MeV

seem likely

12

List of twin Λ hypernuclear events

Although the ratio of the C, N, and O in emulsion is 0.55 : 0.16 : 0.29, $\Xi^{-14}N$ event predominates

	Ξ^- captured by			daughter nuclei							Uniquely identified
	¹² C	¹⁴ N	¹⁶ O	Н	Не	Li	Ве	В	С	n	○: Multiple interpretations
E176 #10-9-6 (2 <i>p</i> ?)				⁴ H			⁹ Be				Nucl. Phys. A 828 (2009) 191–232
E176 #13-11-14 (2 <i>p</i> ?)				⁴ H			⁹ Be				Nucl. Phys. A 828 (2009) 191–232
T008, atomic				t	$2_{\Lambda}{}^{5}$ He						
T009, atomic					Λ^{5} He	8 Li					
T004, atomic					Λ^{5} He			12 B			AIP Conf. Proc. 2130, 020016 (2019)
E373 - 1, atomic					$2_{\Lambda}{}^{5}$ He, α					1	Phys. Lett. B 500 (2001) 37.
T002, atomic					Λ^{5} He		9 Be			1	EPJ A, volume 58, 190 (2022)
T007, atomic					Λ^{5} He		9 Be			1	PTEP 2021, 073D02 (2021)
T011, atomic					2_{Λ}^{5} He, α					1	PTEP 2021, 073D02 (2021)
E176 #14-03-35 (2p?)		\bigcirc	\bigcirc								Nucl. Phys. A 828 (2009) 191–232
T013 (2 <i>p</i> ?)	\bigcirc	\bigcirc		(<i>t</i>)	2_{Λ}^{5} He, (α)					(1)	
E373 : KISO					${}_{\Lambda}{}^{5}He$		Λ^{10} Be				PTEP 2015, 033D02 (2015)
T006 : IBUKI					Λ^{5} He		Λ^{10} Be				Phys. Rev. Lett., 126, 062501 (2021)
E373 : KINKA					Λ^{5} He		9 Be			1	PTEP 2021, 073D02 (2021)
T010 : IRRAWADDY					$2_{\Lambda}{}^{5}$ He, α					1	PTEP 2021, 073D02 (2021)
		↑ Excess?			🔒 alpha clu	ster s	tructure	?			

- Nature of Ξ^- capture process? or biases caused by our analytical methods?
- These identified events are a small fraction of the total.

hypernuclei

[I]

• Charge identification of daughter particles based on track boldness is important.

The first Ξ^- atomic X-ray spectroscopy measurement

- X-ray energy may be shifted and/or broadened due to the strong interaction
- X-ray spectroscopy is one of the most useful methods

M. Fujita et al., NIM-A 1042 (2022) 167439

- Dedicated germanium (Ge) detector array, Hyperball-X
- Continuous in-beam calibration
- Background suppression using Bi₄Ge₃O₁₂ (BGO)

X-ray measurement using the hybrid method

Peak search

- No evident peak using current dataset.
- An upper limit of the probability that Ξ^{-} reaches the last orbit was evaluated.
- A paper reporting this result is in review. (PTEP)

Overall scanning method: a technique to search for untriggered events

An upgraded scanning stage developed by Gifu Univ.

	New scanning system (2021)						
Objective lens	x20						
Focal depth	6 μm						
Area of Field of view $[\mu m^2]$	530*530						
rame rate [fps]	160						
Dead time ratio	0.2 by a piezo actuator						
canning speed/day	540 cm ²						
To scan the all E07 sheets	16 years (4 years using 4 stages)						

 $1000 \text{cm}^2 \times \text{both}_\text{side} \times 1000 \text{ sheets}$, 250 days operation per year

The Field of view of the microscope used track following

100 μm

The Field of view of the developed microscope

16

This work has been supported by this project (KAKEN JP19H05147)

Image recognition using machine learning led by RIKEN

Vertex detection

J. Yoshida, et al., N.I.M A, 847 (2017) 86-92

Purity: 0.081 ± 0.006 Efficiency: 0.788 ± 0.056

Classifier based on Convolutional Neural Network

J. Yoshida et al., N.I.M. A 989 (2021) 164930

Efficiency: 0.788

Mask R-CNN

Object detection using Region based CNN

https://github.com/multimodallearning/pytorch-mask-rcnn

50 µm

Training data is generated using a style transfer model trained by Generative Adversarial Networks.

Generation of training images using a style transfer technique

https://arxiv.org/abs/1611.07004

Simulated Hypertriton events

Tracks generated by Monte Carlo simulations

- α decay chain
- Stop and decay of Hypertriton $({}^{3}_{\Lambda}H)$
 - 2-body decay
 - 3-body decay
- Production and decay of Double Λ hypernucleus etc.

A simulated Double Λ hypernuclear event decayed like Nagara

20 µm

Toward precise measurement of binding energies of hypernuclei

Applications to hypernuclear physics is ongoing.

Analysis of a twin Λ hypernuclei event using X-ray microscopy at SPring-8 (BL47XU)

 $\Xi^{-} + {}^{14}N \rightarrow {}_{\Lambda}{}^{10}Be + {}_{\Lambda}{}^{5}He + n$

Optical microscopy

A. Kasagi et al., EPJ A 58, 190 (2022)

X-ray microscopy (+ stereo method)

- B_{Ξ^-} : -1.23 \pm 0.86 MeV
- It indicates that a Ξ^- atomic state is produced.
- This technique will be applied to charge identification of daughter particles based on track boldness measurement.

Summary:

- Emulsion experiments have been pioneering nuclear systems with double strangeness.
- 47 events of double strangeness including 33 in J-PARC E07 are observed, thus far.
 - Some of them are uniquely identified successfully.
 - A-dependence of $B_{\Lambda\Lambda}$ can be discussed using data of multiple double Λ hypernuclides.
 - Multiple levels of Ξ^- in a ¹⁴N nucleus deeper than the atomic 3D level have been observed.
- The first Ξ⁻ atomic X-ray spectroscopy was conducted, and the probability that Ξ⁻ reaches the last orbit was evaluated.

Prospects:

- Overall scanning method is being developed to detect untriggered events.
 - Upgrade of scanning systems to readout 10³ emulsion sheets.
 - Development of image recognition using machine learning techniques.
 - This technique is applying to precise measurement of hypernuclei.
- X-ray microscopy is applied to resolve vertices and charge identification of daughter particles.

E07 Collaboration (Author list of PTEP 2019, 021D02)

H. Ekawa^{1,2}, K. Agari³, J. K. Ahn⁴, T. Akaishi⁵, Y. Akazawa³, S. Ashikaga^{1,2}, B. Bassalleck⁶, S. Bleser⁷, Y. Endo⁸, Y. Fujikawa¹, N. Fujioka⁹, M. Fujita⁹, R. Goto⁸, Y. Han¹⁰, S. Hasegawa², T. Hashimoto², S. H. Hayakawa^{2,5}, T. Hayakawa⁵, E. Hayata¹, K. Hicks¹¹, E. Hirose³, M. Hirose¹, R. Honda⁹, K. Hoshino⁸, S. Hoshino⁵, K. Hosomi², S. H. Hwang¹², Y. Ichikawa², M. Ichikawa^{1,13}, M. Ieiri³, K. Imai², K. Inaba¹, Y. Ishikawa⁹, A. Iskendir⁵, H. Ito⁸, K. Ito¹⁴, W. S. Jung⁴, S. Kanatsuki¹, H. Kanauchi⁹, A. Kasagi⁸, T. Kawai¹⁵, M. H. Kim⁴, S. H. Kim⁴, S. Kinbara^{2,8}, R. Kiuchi¹⁶, H. Kobayashi⁸, K. Kobayashi⁵, T. Koike⁹, A. Koshikawa¹, J. Y. Lee¹⁷, J. W. Lee⁴, T. L. Ma¹⁸, S. Y. Matsumoto^{1,13}, M. Minakawa³, K. Miwa⁹, A. T. Moe¹⁹, T. J. Moon¹⁷, M. Moritsu³, Y. Nagase⁸, Y. Nakada⁵, M. Nakagawa⁵, D. Nakashima⁸, K. Nakazawa⁸, T. Nanamura^{1,2}, M. Naruki^{1,2}, A. N. L. Nyaw⁸, Y. Ogura⁹, M. Ohashi⁸, K. Oue⁵, S. Ozawa⁹, J. Pochodzalla^{7,20}, S. Y. Ryu²¹, H. Sako², Y. Sasaki⁹, S. Sato², Y. Sato³, F. Schupp⁷, K. Shirotori²¹, M. M. Soe²², M. K. Soe⁸, J. Y. Sohn²³, H. Sugimura²⁴, K. N. Suzuki^{1,2}, H. Takahashi³, T. Takahashi³, Y. Takahashi¹, T. Takeda¹, H. Tamura^{2,9}, K. Tanida², A. M. M. Theint⁸, K. T. Tint⁸, Y. Toyama⁹, M. Ukai³, E. Umezaki¹, T. Watabe¹⁴, K. Watanabe¹, T. O. Yamamoto², S. B. Yang⁴, C. S. Yoon²³, J. Yoshida², M. Yoshimoto⁸, D. H. Zhang¹⁸, and Z. Zhang¹⁸

¹Department of Physics, Kyoto University, ²Advanced Science Research Center, Japan Atomic Energy Agency, ³Institute of Particle and Nuclear Study (IPNS), High Energy Accelerator Research Organization (KEK), ⁴Department of Physics, Korea University, ⁵Department of Physics, Osaka University, ⁶Department of Physics and Astronomy, University of New Mexico, ⁷Helmholtz Institute Mainz, ⁸Physics Department, Gifu University, ⁹Department of Physics, Tohoku University, ¹⁰Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, ¹¹Department of Physics & Astronomy, Ohio University, ¹²Korea Research Institute of Standards and Science, ¹³RIKEN Cluster for Pioneering Research, ¹⁴Department of Physics, Nagoya University, ¹⁵RIKEN Nishina Center, ¹⁶Institute of High Energy Physics, ¹⁷Department of Physics, Seoul National University, ¹⁸Institute of Modern Physics, Shanxi Normal University, ¹⁹Department of Physics, Lashio University, ²⁰Institut für Kernphysik, Johannes Gutenberg-Universität, ²¹Research Center for Nuclear Physics, Osaka University, ²²Department of Physics, University of Yangon, ²³Research Institute of Natural Science, Gyeongsang National University, ²⁴Accelerator Laboratory, High EnergyAccelerator Research Organization (KEK)

Collaboration on machine learning for nuclear physics

Manami Nakagawa¹, Ayumi Kasagi^{1,2}, Enqiang Liu^{1,3,4}, Hiroyuki Ekawa¹, Junya Yoshida⁵, Wenbo Dou^{1,6}, Yan He^{1,11}, Abdul Muneem^{1,7}, Kazuma Nakazawa^{1,8}, Christophe Rappold⁹, Nami Saito¹, Takehiko R. Saito^{1,10,11}, Shohei Sugimoto^{1,6}, Masato Taki¹², Yoshiki K. Tanaka¹, He Wang¹, Yiming Gao^{1,3,4}, Ayari Yanai^{1,6}, and Masahiro Yoshimoto¹³

¹High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN
²Graduate School of Engineering, Gifu University
³Institute of Modern Physics, Chinese Academy of Sciences
⁴School of Nuclear Science and Technology, University of Chinese Academy of Sciences
⁵Department of physics, Tohoku University
⁶Department of Physics, Saitama University
⁷Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology
⁸Faculty of Education, Gifu University
⁹Instituto de Estructura de la Materia, CSIC
¹⁰GSI Helmholtz Centre for Heavy Ion Research
¹¹School of Nuclear Science and Technology, Lanzhou University
¹²Graduate School of Artificial Intelligence and Science, Rikkyo University
¹³RIKEN Nishina Center for Accelerator-Based Science, RIKEN

My current work: construction of a new synchrotron radiation facility, Nano Terasu

1km

- Development of the control systems for
 - X-ray optics devices
 - Light sources in the electron storage ring
- It will be ready in Apr. 2024

 I would like to pioneer new science across various research fields. I look forward to working with you again in the future.