

Free system of four correlated neutrons

Meytal Duer, TU Darmstadt

CLUSHIQ2022 November 3rd, 2022

At and beyond the neutron drip-line

Figure from Marqués, EPJP 136 (2021)

• Neutron matter

• ...

At and beyond the neutron drip-line

۰

. . .

Outline

The tetra-neutron context

- experimental quest
- theoretical predictions

2 4n experiment at SAMURAI: quasi-free α-knockout reaction

- experimental method
- results and discussion

B Future perspectives

next-generation experiments

A 60-year quest

XX century:

fission of uranium •

e.g. Schiffer & Vandenbosch, Phys. Lett. 5 (1963)

Volume 5, number 4	PHYSICS LETTERS	15 July 1963
SEARCI	H FOR A PARTICLE-STABLE TETRA NET	UTRON *
	J. P. SCHIFFER and R. VANDENBOSCH Argonne National Laboratory, Argonne, Illinois	
	Received 7 June 1963	
As in ver, a negat	most experiments of t ive result cannot be re	this sort, how- egarded as
onclusive an ive additiona	d further experiments	are needed to
LIVE AUUUUUU		-

- transfer reactions ٠ e.g. Cerny et al., Phys. Lett. 53B (1974)
- double-charge-exchange ${}^{4}\text{He}(\pi^{-},\pi^{+})$ reaction ٠ e.g. Ungar et al., Phys. Lett. B 144 (1984)
- No indication for a tetra-neutron ≻

A 60-year quest

 $\left[\widetilde{\mathcal{Y}} \right]$

XX century:

• fission of uranium e.g. Schiffer & Vandenbosch, Phys. Lett. 5 (1963)

Volume 5, number 4	PHYSICS LETTERS	15 July 1963
SEARCH	FOR A PARTICLE-STABLE TETRA N	EUTRON *
	J. P. SCHIFFER and R. VANDENBOSCH	
	Argonne National Laboratory, Argonne, Illinois	
	Received 7 June 1963	
As in a ver, a negation onclusive and	nost experiments of ve result cannot be further experiment weight to our resul	this sort, how- regarded as s are needed to

XXI century:

radioactive-ion beams

> first positive signals

- transfer reactions e.g. Cerny et al., Phys. Lett. 53B (1974)
- double-charge-exchange ⁴He(π⁻,π⁺) reaction e.g. Ungar et al., Phys. Lett. B 144 (1984)
- No indication for a tetra-neutron

The elusive tetra-neutron

Marqués *et al.*, arXiv:nucl-ex/0504009 (2005)

The elusive tetra-neutron

Can a bound tetra-neutron exist?

Overall historical consensus: **no bound tetra-neutron**

unrealistic modifications of V_{nn} Glöckle PRC 18, 1978; Offermann, NPA 318, 1979...

Pieper PRL 90, 2003:

$$H = \sum_{i=1}^{A} T_i + \sum_{i < j=1}^{A} V_{ij} + \sum_{i < j < k=1}^{A} V_{ijk}$$

- ab initio Green's function Monte Carlo calculations
- using modern realistic NN and NNN potentials
- good description for light nuclei

Can a bound tetra-neutron exist?

unrealistic modifications of V_{nn} Glöckle PRC 18, 1978; Offermann, NPA 318, 1979...

Pieper PRL 90, 2003:

 $H = \sum_{i=1}^{A} T_{i} + \sum_{i < j=1}^{A} V_{ij} + \sum_{i < j < k=1}^{A} V_{ijk}$

- ab initio Green's function Monte Carlo calculations
- using modern realistic NN and NNN potentials
- good description for light nuclei

"it does not seem possible to change modern nuclear Hamiltonians to bind a tetraneutron without destroying many other succesful predictions... our understanding of nuclear forces will have to be significantly changed"

What about a resonance ?

Pieper PRL 90, 2003:

$$H = \sum_{i=1}^{A} T_{i} + \sum_{i < j=1}^{A} V_{ij} + \sum_{i < j < k=1}^{A} V_{ijk} + \sum_{i=1}^{A} V_{WS}(r_{i})$$

- neutrons trapped in Woods-Saxon potential with radius R and depth $V_{\rm 0}$
- resonance energy by extrapolation to $V_0 \rightarrow 0$
- possible resonance around 2 MeV

What about a resonance ?

Pieper PRL 90, 2003:

$$H = \sum_{i=1}^{A} T_{i} + \sum_{i < j=1}^{A} V_{ij} + \sum_{i < j < k=1}^{A} V_{ijk} + \sum_{i=1}^{A} V_{WS}(r_{i})$$

- neutrons trapped in Woods-Saxon potential with radius R and depth $V_{\rm 0}$
- resonance energy by extrapolation to $V_0 \rightarrow 0$
- possible resonance around 2 MeV

Hiyama et al., PRC 93, 2016:

Full treatment of continuum

- absence of a four-neutron resonance
- resonance behaviour only for remarkably (unrealistic) attractive 3N force in T=3/2 channel
 - > 15 times larger than T=1/2
 - inconsistent with known light nuclei

What about a resonance ?

All studies agree on:

- dominance of V_{nn} (${}^{1}S_{0}$) in multi-neutron systems
- negligible contribution of 3N force

Contradictory results:

- do not origin from different interactions
- methods to solve the few-neutron problem and/or treatment of the continuum

From bound state to the continuum

example: $2n ({}^{1}S_{0})$ confined in a trap

Importance of near threshold region (Analytic Continuation on the Coupling Constant Method)

Modified from Deltuva & Lazauskas, PRL 123 (2019)

The elusive tetra-neutron

Modified from Marqués & Carbonell, EPJA 57 (2021)

Experiment:

- a long-standing quest for tetra-neutron system
- so far, three (weak) positive signals:
 - ★ GANIL 2002, RIKEN 2016, TUM 2022
 - indications for bound / unbound

Theory:

- no bound tetra-neutron
- no consensous about a resonant state

Outline

The tetra-neutron context

- experimental quest
- theoretical predictions

2 4n experiment at SAMURAI: quasi-free α-knockout reaction

- experimental method
- results and discussion

Future perspectives next-generation experiments

Present experimental work

QFS knockout ⁸He(p,p⁴He) at 156 MeV/nucleon

- Large momentum transfer p-4He
 - "recoil-less" production
 - minimizes final-state interactions (FSI)
 between neutrons and charged particles

Present experimental work

QFS knockout ⁸He(p,p⁴He) at 156 MeV/nucleon

- Large momentum transfer p-4He
 - "recoil-less" production
 - minimizes final-state interactions (FSI)
 between neutrons and charged particles
- ⁸He is a good starting point:
 - \succ pronounced α -core structure
 - > large overlap (⁸He|α⊗4n)

Present experimental work

QFS knockout ⁸He(p,p⁴He) at 156 MeV/nucleon

- Large momentum transfer p-4He
 - "recoil-less" production
 - minimizes final-state interactions (FSI)
 between neutrons and charged particles
- ⁸He is a good starting point:
 - > pronounced α-core structure
 - > large overlap (⁸He|α⊗4n)
- 4n energy spectrum via missing mass
 - > precise measurement of charged particles

$$P_{miss} = P_{*_{He}} + P_{p(tgt)} - P_{*_{He}} - P_{p}$$

$$E_{4n} = \sqrt{E_{miss}^2 - \boldsymbol{P}_{miss}^2} - 4 m_n$$

 $E_{4n} < 0$: bound $E_{4n} > 0$: unbound

The Radioactive Ion Beam Factory

SAMURAI dipole magent: up to 3 T (1.25 T) Tracking & identification of secondary beam (⁸He) Tracking & identification of fragments (p, ⁴He) Neutrons (not possible in this experiment)

SAMURAI dipole magent: up to 3 T (1.25 T) Tracking & identification of secondary beam (⁸He) Tracking & identification of fragments (p, ⁴He) Neutrons (not possible in this experiment)

SAMURAI dipole magent: up to 3 T (1.25 T) Tracking & identification of secondary beam (⁸He) Tracking & identification of fragments (p, ⁴He) Neutrons (not possible in this experiment)

Benchmark measurement

QFS knockout ⁶He(p,p⁴He)

- 2n relative-energy spectrum is expected to be well described by theory
- di-neutron is unbound by ~100 keV

Benchmark measurement

QFS knockout ⁶He(p,p⁴He)

- 2n relative-energy spectrum is expected to be well described by theory
- di-neutron is unbound by ~100 keV

Theoretical input:

- w/o FSI: 3-body (4He+n+n) cluster model
 - > nn interaction in ${}^{1}S_{0}$ wave
 - > $n\alpha$ interactions in s-, p-, d-wave
 - > phenomenological 3-body force
- w/ FSI: nn final-state interaction
 - t-matrix approach

M. Göbel et al., "Neutron-neutron scattering length from the ⁶He(p,pα)nn reaction", PRC 104 (2021)

Benchmark measurement

QFS knockout ⁶He(p,p⁴He)

- 2n relative-energy spectrum is expected to be well described by theory
- di-neutron is unbound by ~100 keV

Theoretical input:

- w/o FSI: 3-body (⁴He+n+n) cluster model
 - > nn interaction in ${}^{1}S_{0}$ wave
 - > $n\alpha$ interactions in s-, p-, d-wave
 - > phenomenological 3-body force
- w/ FSI: nn final-state interaction
 - t-matrix approach

M. Göbel et al., "Neutron-neutron scattering length from the ⁶He(p,pa)nn reaction", PRC 104 (2021)

Results: missing-mass spectra

6He(p,p⁴He)2n

MD et al., Nature 606, 678 (2022)

Results: missing-mass spectra

low-energy peak ~100 keV

MD et al., Nature 606, 678 (2022)

Continuum component

"sudden removal of an α-particle from ⁸He"

- Five-body (⁴He+4n) COSMA model
 A source term for the reaction mechanism:
 - initial structure (⁸He)
 - \succ sensitive to the hyperradius of the source ρ
 - > 5.6 fm reproduces experimental ⁸He radius

continuum spectrum w/o FSI

 $\sum_{i=1,4} r_i^2 = \rho^2 + 4r_{\rm cm}^2$

Zhukov et al., PRC (1994); Grigorenko et al., EPJA (2004)

Results: missing-mass spectra

MD et al., Nature 606, 678 (2022)

A tetra-neutron correlation?

Predictions for a tetra-neutron

★ Shirokov PRL 117 (2016);
 Gandolfi PRL 118 (2017);
 ↓ Fossez PRL 119 (2017);
 ↓ Li PRC 100 (2019);

A tetra-neutron correlation?

Predictions for a tetra-neutron

Full treatment of continuum \rightarrow **No tetra-neutron**

5

A recent overview: Marqués & Carbonell, EPJA 57 (2021)

Low-energy structures

"the four-neutron system is studied using exact continuum equations for transition operators... This indicates the absence of an observable 4n resonance, in contrast to a number of earlier works. Even without an observable resonance the transition operators exhibit pronounced low-energy peaks"

must be combined with reaction mechanism

Fossez PRL 119 (2017); 🕁 Li PRC 100 (2019);

A tetra-neutron correlation?

Predictions for a tetra-neutron

Full treatment of continuum → No tetra-neutron

A recent overview: Marqués & Carbonell, EPJA 57 (2021)

Low-energy structures

Laszauskas, Hiyama, Carbonell, arXiv:2207.07575 [nucl-th] (2022)

★ Shirokov PRL 117 (2016);
 Gandolfi PRL 118 (2017);
 ↓ Fossez PRL 119 (2017);
 ↓ Li PRC 100 (2019);

Outline

The tetra-neutron context

- experimental quest
- theoretical predictions

2 4n experiment at SAMURAI: quasi-free α-knockout reaction

- experimental method
- results and discussion

3 Future perspectives

next-generation experiments

Correlations in multi-neutron systems [Proposal 2022, K. Miki, MD, T. Uesaka et al.]

• Neutron detection: ⁸He(p,px)4n with all four neutrons in coincidence

Correlations in multi-neutron systems [Proposal 2022, K. Miki, MD, T. Uesaka et al.]

• Neutron detection: ⁸He(p,pα)4n with all four neutrons in coincidence

Correlations in multi-neutron systems [Proposal 2022, K. Miki, MD, T. Uesaka et al.]

• Neutron detection: ⁸He(p,pα)4n with all four neutrons in coincidence

• Reaction mechanism: ⁶He(p,3p)4n knockout reaction

- > (p,3p) cross sections measured for heavy nuclei
- two sequential p-p collisions A. Frotscher et al., PRL 125 (2020)

nn scattering length from 6He(p,pa)nn reaction

[T. Aumann et al. SAMURAI55R1]

- nn scattering length not known precisely experimentally
- HIME neutron detector $\rightarrow a_{nn}$ within ±0.2 fm

HIME demonstrator

nn scattering length from 6He(p,pa)nn reaction

[T. Aumann et al. SAMURAI55R1]

- nn scattering length not known precisely experimentally
- HIME neutron detector $\rightarrow a_{nn}$ within ±0.2 fm

HIME demonstrator

Multi-neutron ⁴n and ⁶n states in extremely

n-rich nuclei [T. Nakamura et al. SAMURAI47, Jan. 2023]

- ¹¹Li(p,2p) knockout reaction:
 - ¹⁰He \rightarrow ⁸He + 2n / ⁶He + 4n / ⁴He + 6n
- Mainly missing-mass: (p,2p) + fragment
 - two neutrons in coincidence
 - nn correlations

Article

Observation of a correlated free four-neutron system

Thank you!

M. Duer^{1⊠}, T. Aumann^{1,2,3}, R. Gernhäuser⁴, V. Panin^{2,5}, S. Paschalis^{1,6}, D. M. Rossi¹,
N. L. Achouri⁷, D. Ahn^{5,16}, H. Baba⁵, C. A. Bertulani⁸, M. Böhmer⁴, K. Boretzky², C. Caesar^{1,2,5},
N. Chiga⁵, A. Corsi⁹, D. Cortina-Gil¹⁰, C. A. Douma¹¹, F. Dufter⁴, Z. Elekes¹², J. Feng¹³, B. Fernánd
ez-Domínguez¹⁰, U. Forsberg⁶, N. Fukuda⁵, I. Gasparic^{1,5,14}, Z. Ge⁵, J. M. Gheller⁹, J. Gibelin⁷,
A. Gillibert⁹, K. I. Hahn^{15,16}, Z. Halász¹², M. N. Harakeh¹¹, A. Hirayama¹⁷, M. Holl¹, N. Inabe⁵,
T. Isobe⁵, J. Kahlbow¹, N. Kalantar-Nayestanaki¹¹, D. Kim¹⁶, S. Kim^{1,16}, T. Kobayashi¹⁸, Y. Kondo¹⁷,
D. Körper², P. Koseoglou¹, Y. Kubota⁵, I. Kuti¹², P. J. Li¹⁹, C. Lehr¹, S. Lindberg²⁰, Y. Liu¹³,
F. M. Marqués⁷, S. Masuoka²¹, M. Matsumoto¹⁷, J. Mayer²², K. Miki^{1,18}, B. Monteagudo⁷,
T. Nakamura¹⁷, T. Nilsson²⁰, A. Obertelli^{1,9}, N. A. Orr⁷, H. Otsu⁵, S. Y. Park^{15,16}, M. Parlog⁷,
P. M. Potlog²³, S. Reichert⁴, A. Revel^{7,9,24}, A. T. Saito¹⁷, M. Sasano⁵, H. Scheit¹, F. Schindler¹,
S. Shimoura²¹, H. Simon², L. Stuhl^{16,21}, H. Suzuki⁵, D. Symochko¹, H. Takeda⁵, J. Tanaka¹⁵,
Y. Togano¹⁷, T. Tomai¹⁷, H. T. Törnqvist^{1,2}, J. Tscheuschner¹, T. Uesaka⁵, V. Wagner¹, H. Yamada¹⁷,
B. Yang¹³, L. Yang²¹, Z. H. Yang⁵, M. Yasuda¹⁷, K. Yoneda⁵, L. Zanetti¹, J. Zenihiro^{5,25} &

678 | Nature | Vol 606 | 23 June 2022