

Kyoto University

Prospects and experiments with ErLi large mass-imbalance mixtures

F. Schäfer, Y. Haruna, and Y. Takahashi

第8回クラスター階層領域研究会, Osaka – 2023/02/09-11

Outline

- Why? Introduction
 - Efimov cluster states in quantum mixtures
 - p-wave superfluidity in mixed dimensions
- How? Prospects of large mass-imbalanced Er-Li mixtures
 - Properties of Er-Li quantum degenerate mixtures
 - Possibilities of interspecies interaction control
- What? Feshbach resonances in Er-Li mixtures
 - Formation triple-species mixtures of Er, Li and Yb
 - Observation of Er-Li Feshbach resonances
 - Towards the realization of new Efimov states
- Summary

- Infinite number of three-body bound states
- Scaling factor $\lambda_0 \approx 22.694$
- Energy scaling $E/(\lambda_0)^{2n}$
- Deviation of ground-state and first excited-state trimer from universal spectrum
- Difficulty to observe series of Efimov trimers due to large scaling factor

P. Naidon and S. Endo, Rep. Prog. Phys. 80, 056001 (2017)

Efimov physics beyond three identical bosons

P. Naidon and S. Endo, Rep. Prog. Phys. 80, 056001 (2017)

p-wave superfluidity in mixed dimensional systems

- 1972: Discovery of superfluidity in ³He by Lee, Osheroff and Richardson (Nobel Prize 1996)
- ³He is a fermion \rightarrow no s-wave coupling possible
- Superfluidity caused by p-wave Cooper pairs


```
wikipedia.org
```

It is hard to find a well controllable system to study p-wave superfluidity.

P-wave superfluidity with ultracold atoms in mixed dimensions

- 2009 Nishida: 2D Fermi gas within 3D other species Fermi gas
- 2016 Wu, Bruun: 2D Fermi gas embedded in 3D BEC
- 2017, 2018: Further refinements and detailed calculations for ⁷Li-¹⁷³Yb
- Mechanism: Increased critical temperature due to Fermion pairing via Bogoliubov phonon mediated interactions

Elements for a large mass-imbalance ultracold mixture

http://sciencenotes.org

Mass ratio 167 Er (fermion) : 6 Li (boson) = 27.8 $\gg 13.6$

- Mass ratio > 13.6 \rightarrow Possibility of Efimov states involving fermions
- Expected scaling ratio for Fermi-Fermi 167 Er- 167 Er- 6 Li trimer: $\lambda_{0} \approx 8$
- Also possible: all bosonic case, $^{168}\text{Er-}^{168}\text{Er-}^{7}\text{Li} \rightarrow \lambda_{_{0}} \thickapprox 4.5$

The triple-species mixture machine

- Upgrade of existing Yb-Li experiment to additionally include Er
- Successful slowing, trapping and cooling of ¹⁶⁶Er, ¹⁶⁷Er, ¹⁶⁸Er to microkelvin temperatures
- Simultaneous trapping of Er-Li, Er-Yb, Yb-Li and Er-Yb-Li demonstrated

Realization of double quantum degenerate Er-Yb mixture

Possible appliations

- Study of magnetic impurity systems
- Observation of quantum chaotic Feshbach spectra while still "ab initio capable"
- Search for proton-to-electron mass ratio changes

M. Kosicki et al., NJP 22, 023024 (2020)

Creation and probing of an ultracold Er-Yb-Li mixture

- Optimization of sequence parameters heavily supported by machine learning
- Magnetic field control to maintain polarization of Er in lowest-energy magnetic substate
- Control of Li spin state by optical pumping to a stretched-state configuration

- Efficient cooling of Er and Li by sympathetic cooling with $^{174}\mathrm{Yb}$
- Also realized: triple-species mixture with fermionic $^{167}\mbox{Er}$ and/or $^6\mbox{Li}$
- Removal of "unwanted" species from trap after evaporation by blast light possible
- First task: Control of Er-Li interspecies interaction (via magnetic Feshbach resonances)

Previously: Feshbach resonances in Er-Li mixture with bosonic Er

► Rich spectrum of Er-Li Feshbach resonances for many isotope & spin combinations

 \blacktriangleright Rich spectrum of Er-Li Feshbach resonances, with some rather broad ones (> 1 G)

 \blacktriangleright Rich spectrum of Er-Li Feshbach resonances, with some rather broad ones (> 1 G)

A closer look at a broad ¹⁶⁷Er-⁶Li Feshbach resonance

- Width > 2 G \rightarrow good candidate for precise interspecies interaction control
- Losses for Er about twice as strong as for Li \rightarrow suggests Er-Er-Li interaction
- Asymmetric lineshape \rightarrow Indicator of complex structure \rightarrow Efimov physics?

S.-K. Tung et al., PRL 113, 240204 (2014)

- Expect series of Efimov resonances on "attractive side" (a < 0) of Feshbach resonance
- Discrete scaling symmetry in trimer size, binding energy and scattering length
- $\ensuremath{\,^\circ}$ Enhanced recombination coefficient K_3 leads to increased atom loss from the trap

Comparsion to previously observed Efimov resonances

- Three Efimov resonances observed
- Geometric series 1, λ , λ^2 with $\lambda_{expt} = 4.9(4)$

- Some "fine-structure" visible
- Additional data for analysis needed

Comparsion to previously observed Efimov resonances

Our work: ¹⁶⁷Er-¹⁶⁷Er-⁶Li

- Asymmetric lineshape of resonant losses
- Three Efimov resonances observed
- Geometric series 1, $\lambda,\,\lambda^2$ with $\lambda_{\mbox{\tiny expt}}=4.9(4)$

- Asymmetric lineshape observed
- Some "fine-structure" visible
- Additional data for analysis needed

Summary

Large mass-imbalance ultracold atom systems as gateway to new Efimov trimer states

First experimental realization of cold Er-Li large mass-imbalance and Er-Yb mixtures

Bose-Fermi mixtures in mixed-dimensions for non-s-wave superfluid states of matter

Identified ¹⁷⁶Er-⁶Li Feshbach resonance candidates for future experimental work