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' Outline

> Introduction :

- Three-body forces appearing in various hierarchies

 Optical lattice system as a quantum simulator

> Methods :

* High-resolution spectroscopy

- Control of the interaction strength by a Feshbach resonance

> Results :

- Magnetic field dependence of resonance frequency shift

* Quantitative comparison with numerical calculation results

> Summary & Outlook



Quantum few-body systems

Importance of physics in quantum few-body systems :

Existence of phenomena with universality that across hierarchies

Among these...
Three-body forces have been
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Three-body forces in the hadron hierarchy

Examples of three-body forces
in the hadron hierarchy

Ground-state enerqgy of
Ca isotopes

Deuteron-proton
scattering cross section
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' Three-body forces in the hadron hierarchy

Mechanism of
three-body forces

J
Fujita-Miyazawa-type
three-body force

nucleon nucleon nucleon

J. Fujita and H. Miyazawa,
Prog. Theor. Phys. 17, 360 (1957).
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' Three-body forces in the nuclear hierarchy

Example of three-body force
in the nuclear hierarchy
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' Three-body forces in the atom hierarchy

Example of three-body force
in the atom hierarchy

Three-body force between Vi i)
atoms in a harmonic trap

- Weak interaction region
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Fujita-Miyazawa-type
three-body force
P. R. Johnson et al, New. J. Phys. 11, 093022 (2009).

- Stronqg interaction reqgion

Theoretical work on the formation of
Efimov states in a harmonic trap:
D. Blume et a/, PRA. 97, 033621 (2018).

— Research subjects in this study
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Optical lattice system as a quantum simulator

Optical lattice system : Useful platform with high controllability
of various parameters of the system
— Quantum simulator for quantum few-body systems

Isolated arrays of quantum few-body systems Controllability for interactions
in @ harmonic trap can be created. between atoms
by a Feshbach resonance
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Scattering length (nm)

we have studied 2-body interactions.




Fraction of g atoms

Optical lattice system as a quantum simulator

Optical lattice system : Useful platform with high controllability
of various parameters of the system
— Quantum simulator for quantum few-body systems

Isolated arrays of quantum few-body systems Controllability for interactions
in @ harmonic trap can be created. between atoms
by a Feshbach resonance
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' Outline of this study

Research contents

v Study three-body forces in a harmonic trap

In an optical lattice system

Purpose

v Qualitative understanding of three-body forces in

a harmonic trap in a wide range of interaction strength

[ Methods h
v" High-resolution laser spectroscopy

\\/ Control of the interaction strength by a Feshbach resonance
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' Method : How to study multi-body forces

How do we study multi-body } These are revealed by filling-dependent
forces in a harmonic trap ? resonance shift in an obtained spectrum.
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Method : High-resolution spectroscopy

Relevant energy levels of
a Yb atom for the spectroscopy

1P]

399 nm
Absorption imaging

532 nm
Optical lattice

Spectroscopy
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174Yp atoms

Typical filling-resolved spectrum
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Method : Control of the interaction strength

Interaction strength between atoms can

be controlled by a Feshbach resonance.
Feshbach resonance used in this study :
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Results : Resonance freq. shift vs. B-field
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Filling-dependent frequency shifts were systematically measured
over a wide range of interaction strengths.
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' Results : Resonance freq. shift of ‘n=2’

Scattering

Resonance position [kHZz]

length [nm]

407

‘Busch’s formula’
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N 2
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A

N

0 100 200 300 400 500 600 700
Magnetic field [mG]

| [(—E/(2hw) +1/4)  a
] « E: interaction energy
Z - a: scattering length

_ \/—F(—E/(Zhw) +3/4) o

- 0: harmonic oscillator length (\/#/(mw))

-4 -2 0 2 4
a/o
T. Busch et al, Found. Phys. 28, 549 (1998).

The shifts of ‘n=2’ is in good agreement

with the calculated values.
(as in the previous work: S. Kato et a/. (2013))



' Results : Resonance freq. shift of ‘n=3’
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Results : Resonance freq. shift of ‘n=3’
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The shifts of ‘n=3’ is also in good
agreement with the calculated values.



' Results : Resonance freaq.

Resonance position [kHZz]

shift of ‘'n=4"
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Benchmark results
for the future work
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« All plots show a similar trend of deviation
from the calculated values.

« The evidence of four-body force was not found
within the accuracy of this measurement.



' Summary & Outlook

v Study three-body forces in a harmonic trap in an optical lattice system

v" Determine the binding energy in a wide range of interaction strength
by a Feshbach resonance beyond perturbative regime

v' Resonance freq. shift of =3 shows

good guantitative agreement with calc. results.
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not found within the accuracy of this measurement.
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— Benchmark results for the future work
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