Theoretical study of cluster decay from photonuclear reactions and its application to the ultra high energy cosmic rays

M. Kimura (RIKEN)

- Introduction
- Theoretical model
- Results
- O Summary & Perspectives

Introduction : UHECRs, photonuclear reactions and cluster decay

Ultra High Energy Cosmic Rays

- Its energy reaches 10²⁰eV
- Its source is unknown
 (NS, Galactic core, ···)
- Its composition and energy distribution began to be measured

Introduction : UHECRs, photonuclear reactions and cluster decay

Nuclei accelerated at the source propagate colliding with CMB ⇒ Transport simulation to know the composition at the source

Introduction : UHECRs, photonuclear reactions and cluster decay

In the rest frame of nuclei, CMB corresponds to a broad-range of photon

Photo-nuclear cross-section is dominated by Giant electric dipole resonance (GDR) in the **z=22** energy range of 10-50 MeV.

E. Khan, et al., Astro. Phys. 23, 191 (2005).

Z=26

44 45

43 44

50 51

: PSB path

Problems to be solved

OCross section(GDR)OBranching ratio of GDR

 $A+\gamma \rightarrow A^* \rightarrow (A-1)^* + n, p$ \rightarrow (A-2)* + d \rightarrow (A-4)* + ⁴He

We need to take into account multi-particle-hole contributions to take into account cluster emission

Problems to be solved

OCross section(GDR)OBranching ratio of GDR

$$\begin{array}{rcl} A+\gamma \rightarrow & A^* \rightarrow (A-1)^* + n, p \\ & \rightarrow & (A-2)^* + d \\ & \rightarrow & (A-4)^* + {}^4\text{He} \end{array}$$

In N=Z nuclei, we also need to take into account isospin selection rule

 $^{16}O(T=0) + \gamma \implies ^{16}O^*(T=1) \nearrow ^{12}C(g.s, T=0) + \alpha$

In N=Z nuclei, T=0 cluster decay is suppressed, but the extent of this suppression is unknown. There is also an effect of isospin mixing

Time-dependent approach

◎ Microscopic Hamiltonian

$$H = \sum_{i=1}^{A} t(i) - t_{cm} + \sum_{i < j}^{A} v(ij)$$

○ Time-dependent wave packets

$$\Phi(t) = \mathcal{A} \{ \phi(\mathbf{Z}_1(t)), ..., \phi(\mathbf{Z}_A(t)) \}$$

$$\phi(\mathbf{Z}_i(t)) = \exp \{ -\nu(\mathbf{r} - \mathbf{Z}_i(t))^2 \} (\alpha_i(t) |\uparrow\rangle + \beta_i(t) |\downarrow\rangle)$$

© Equation of motion for the centroids of the wave packet

$$i\hbar \frac{d\mathbf{Z}_i(t)}{dt} = \sum_j C_{ij}^{-1} \frac{\partial \mathcal{H}}{\partial \mathbf{Z}_j^*(t)}$$

t = 0 fm/c 100 fm/c 200 fm/c 300 fm/c 400 fm/c 500 fm/c 600 fm/c

Time-dependent approach

The ensemble of wave functions is ergodic and follows quantum statistics

With a sufficiently long time evolution, all possible states emerge.

More frequent appearance of quantum states at set temperatures

J. Schnack and H. Feldmeier, NPA601, 181 (1996).

A. Ono and H. Horiuchi, PRC53, 845 (1996), PRC53, 2341 (1996).

Superposition of the wave functions will provide an accurate description of ground state and GDR

Time-dependent approach

Benchmark in ⁶He

⁶He (6 nucleons)

	S _{2n}	proton radius	neutron radius
Present calc.	-1.01 MeV	1.83 fm	2.64 fm
Exact	-1.01 MeV	1.83 fm	2.65 fm

E1 strength

Excited states are also obtained from the same ensemble. Directly calculate the E1 transition intensities from the ground state to the excited states

⁶He (6 nucleons)

Results: Photo-nuclear cross sections

E1 strengths are systematically calculated for light nuclei (psd-shell) 25 6 expt. ۰ 17O170 **SMLO** 4 20 AMD tot. 2 ¹⁵ CS [mp] 10 0 -2 -4 -6 6 -6 15 20 25 30 10 Ey [MeV] 20 35 AMD (-3.5MeV) TALYS 16O ^{12}C 30 O Exp.(Ahrens et al.) AMD tot. (-2MeV) 25 AMD (γ, α) 5[mb] 02 [mp] SJ 15 AMD (γ, p) 10 10 5 0 20 25 15 10 10 30 20 30 40 Ex [MeV] Eγ [MeV]

Parameters of Hamiltonian are optimized by using ML Hamiltonian: Minnesota Pot. + LS + FR-3body

Decay widths and branching ratio

Decay widths are estimated from reduced amplitudes

© RWA is calculated by Laplace expansion

Y. Chiba and M.K., PTEP2017, 053D01 (2017)

Decay width and branching ratio

Comparison ¹⁶O and ¹⁷O

No experimental data for branching ratio Estimation by TALYS code is not reliable

- © Level density fitted to heavier mass system is applied. Hence, no accuracy for light nuclei.
- ◎ Isospin selection rule is not taken account

Decay width and branching ratio

\bigcirc Suppression of (γ, α) compared to

Summary

O Motivation

- UHECR and photonuclear reaction
- Energy & strength of GDR, its decay BR
- Systematic survey of light nuclei

OStudy of GDR in light nuclei

- Time-dependent approach to GDR
- Fitting of Hamiltonian parameters with Baysian
 Opt. and Eigenvalue continuation method
- Decay BR from GDR has been estimated.
 Considerably different from TALYS

OPerspectives

- Publication as a database
- Application to transport model

進捗と展望

◎ 予備的結果

- 少数系でのベンチマーク
- 酸素同位体の光吸収断面積と分岐比

