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High Energy HIC and Clusters

Hadrons: Clusters of Quarks
In this talk, we focus on heavy quarks such as charm and bottom.

Charm quarks and bottom quarks as impurities in QGP

» QObserved mainly through open charm mesons and open bottom mesons

Nowadays, possible to distinguish between ¢ and b at RHIC and LHC
(vertex detection)

In the following, we focus on low energy nuclear collisions.

Heavy quarks = Charm quarks



High Energy HIC: Accelerator
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High Energy HIC: Event

STAR at RHIC

One Event: Au+Au collision
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Trajectories of charged particles

Color: Momentum



n/s in QCD (ug=0)
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Significant increase in hadron phase (cluster formation)
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v,(v,): Fourier Expansion w.r.t. Flow Angle

Particle distribution as a function of angle measured from reaction plane
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Shear Viscosity and v.

Collision Axis

Collision Axis

~

Larger shear viscosity, larger shear stress

Large pressure gradient

— More smearing of pressure gradient

\ # Less angle dependence of flow/




Strongly Interacting QGP

Hydrodynamical feature of QGP = Strongly interacting QGP
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« At SPS, perfect fluid calculation did not explain
Vo SO well.

* Hydro calculation revealed physical properties
of QGP (RHIC).
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Charm (D) is also flowing.




QCD Phase Diagram (expected)
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At yg=0, crossover Net Baryon Density ~ GSI

Recent interests: Critical point, High density and Low T (=neutron star)




Beginning of QCD Critical Point Search
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Fig. 8. The phase transition line in the cases (1) and (II).




Many Theoretical Calculations for CP
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Experimental Search for Critical Point

Vary collision energy
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RHIC(BES, BES-II), FAIR(GSI), NICA(JINR), J-PARC HI(planned) ...



Time Evolution of High Energy HIC

QGP and hadronic phase \

initial state hydrodynamic expansion and freeze-out

pre-equilibrium hadronization
© S. A. Bass
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~1023 sec

Interacting quarks, gluons, and hadrons

~1022secC

Cooling, phase transition, generation of collective motion---etc.

CP cannot be observed directly.




Critical Phenomena + Time Evolution

 Even if the system passes through CP, diverging fluctuation is not observed.
= Finite time effect

* Near CP, critical slowing down is important. (dynamical critical phenomena)

T4 » Generation + Evolution A
_ Growth of fluctuation
.\ In the vicinity of CP,
critical slowing down of fluctuation evolution
' - » fluctuation decreases owing to diffusion
Haogons \_ Y
0 \ "

Experimentally, critical fluctuation is not observed directly.



Dynamical Critical Phenomena

- Dynamic Universality:
QCD belongs to Hohenberg-Halperin’s model-H

« Critical slowing down at CP = Dip of diffusion constant (D)
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Increase of drag force (775) in Langevin equation
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v, of Open Charms

* As collision energy decreases, duration of QGP becomes shorter.
It is expected difference of v,’s of charm and fluid becomes larger.

* If the system passes the vicinity of CP and drag force for charm
increases, v,'s of charm and fluid may get closer to each other.

# Non-monotonous change of the ratio of v,’s of
open charm and fluid ?
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QCD Phase Diagram
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This CP: CP for Chiral Symmetry




Charm as Impurity

This CP: CP for Chiral Symmetry

Chiral Symmetry: Approximate symmetry for light quarks
(up, down, (strange))

Charm Quark : obeys the same interaction as up, down, and strange (QCD),
but stays outside Chiral Symmetry.

Impurity with the same interaction but different symmetry

Behavior of charm diffusion coefficient or drag force
in the vicinity of CP: non-trivial problem



Strategy

Dynamic universality class of this CP: Model H
(order parameter, baryon number density, EM tensor)

Effective model: determined by symmetry consideration

L = —acQ'0

a. constant
c: light mode
linear combination of order parameter, baryon number density, energy density

Momentum diffusion constant of heavy quark (~ drag force)

2
K = “? [ (Voo (%.0)- Vo (%,0))dt

Correlation function: scaling form
C(3,t) = <5a(x, £)6c-(0, 0)>

- %é(\ﬂ/é, (/&) z~3 (Model H)



Result
o w N

K—? B (Vo (%,1)-VSo(X,0))dt

_éjz d-n
X xo. UV cut-off, n: small number

Preliminary: Y. Akamatsu and M. A

\ in progress/

model A: z ~ 2 No increase
model B: z ~ 4 Increase at CP
model H: z ~ 3 (QCD) Almost const.

Behavior of drag force around CP depends on dynamic universality class.

[ Impurity with the same interaction but different symmetryJ

Example in Condensed Matter Physics ?
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