Lifetime measurement of light hypernuclei at J-PARC

Tadashi Hashimoto (JAEA/ASRC) 2023/2/9 @ 第8回クラスター階層領域研究会

Hypertriton

- Important input to determine the ΛN spin-singlet strength

- Small B_A~130 keV from old emulsion data
 - \rightarrow large spacing between Λ & d
 - \rightarrow lifetime should be simlar to free Λ (263 ps)
 - for example 256 ps by H. Kamada, et al, Phys. Rev. C Nucl. Phys. 57, 1595 (1998).

• Lightest hyper nucleus: bench mark for $\Lambda N(\Lambda NN)$ interaction models.

• Spin 1/2 determined by the two-body decay ratio R3 (G. Keyes et al., NPB67, 269, 1973).

Year

(Part of) Recent progress in theory

- Pion FSI enhance the decay rate 10~20%
 A. Gal, et al, Phys. Lett. B 791, 48 (2019).
- Σ admixtures reduce the decay rate ~10%
 Strong dependence on B_Λ
 A. Pérez-Obiol, et al, Phys. Lett. B 811, 135916 (2020).
- Branching ratio depends on B∧ F. Hildenbrand et al., Phys. Rev. C102, 064002 (2020).
- etc…

Need precision measurements for Lifetime and B_{Λ}

Ongoing/Planned experiments

- Heavy ion collision (for lifetime and Binding energy)
 - ALICE Run 3(2021~2024), Run 4 (2027~2030): ~50 times yield expected
 - GSI: FRS+WASA data taking peformed in 2022
- Binding energy measurement
 - MAMI (e, e'K): decay pion spectroscopy. data taking peformed in 2022
 - JLab (e, e'K): C12-19-002
 - J-PARC E07: Emulsion full scan
- Counter experiments for lifetime
 - ELPH: $(\gamma, K+)$
 - J-PARC P74: (π -, K⁰) at K1.1
 - J-PARC E73: (K-, π^{0}) at K1.8BR test data taking peformed in 2020/2021

J-PARC E73/T77 experiment

 \checkmark (K⁻, π^0) reaction to selectively populate the ground hypernucleus \checkmark Lifetime measurement in time domain

(K⁻, π^{0}) reaction

 $K^- + n \rightarrow \Lambda + \pi^-$

widely adopted with magnetic spectrometers

Recoil Momentum (MeV/c) 400 300 $K^- + p \rightarrow \Lambda + \pi^0$ 200 100 difficult to do π^0 spectroscopy 0.5

• Convert a proton to a Lambda \rightarrow produce neutron-rich hypernucleus

600

500

- Low recoil momentum \rightarrow hypernucleus mostly stops before its decay
- Spin-nonflip reaction is dominant at 1.0 GeV/c or lower
- π^0 spectroscopy is difficult \rightarrow high-energy gamma tagging at forward angle

PbF2 EM calorimeter

- Cherenkov-type, Radiation hard
- 25 x 25 x 140 mm³
- 40 segment
- 1/4" PMT with Fe magnetic shield

2019.12: Test experiment @ ELPH using 100~800 MeV e+ beam

seg13 200 180 electron pion 160 x0.05 ~6%(σ) 140 120 100 80 60 40 20 -900 100 200 300 400 500 600 700 Ο Energy (arbitrary) Beam Energy [GeV] Fig. 5. Transmission as a function of wavelength for samples of PbF2: (A) before irradiation, (B) after 3×10⁵ rad of neutrons and 1×10⁵ rad of gamma rays, and (C) after ight of rad of Densit ventrons and 05×10⁶ rades of gathing rays. The absorption Radiation Moliere Crystal length radius feature at about 580 nm is an artifact of the measurement technique. 7.77 12 PbF₂ 0.93 cm 2.22 cm 5% 2ns g/cm^3 USD/cc

> D.F. Anderson, et al., Nucl. Inst. Meth. A290 (1990) 385 P. Achenbach, et al., Nucl. Inst. Meth. A416 (1998) 357

T77/E73@K1.8BR

liquid H₂/D₂/³He/⁴He target system

20

beam line spectrometer

uninstal

neutron counter charge veto cou proton counter

- ~ 2 x 10⁵ K- /spill (~70% on target)
 @ 50 kW, -1.0 GeV/c
- K/pi ~ 0.4
- ~50 kW @ T77, 2020.6
- ~60 kW @ E73_{1st}, 2021.5

- Background is now well understood with quasi-free hyperon processes.

• H4L peak was clearly observed. I gamma tagging method is proved for the first time.

4∧H lifetime

arXiv:2302.07443

Systematic errors

Contribution	Value
Intrinsic bias of J-PARC T77 approach	±2 ps
Uncertainty from γ selection	<u>+</u> 4 ps
Uncertainty of time calibration	<u>+</u> 7 ps
Uncertainty of background subtraction	±5 ps
Uncertainty in fitting process	<u>+</u> 7 ps
Total (quadratic sum)	<u>+</u> 12 ps

. Comparable presicion with the latest STAR data (218 \pm 6(stat.) \pm 13(sys.))

(doi.org/10.1103/PhysRevLett.128.202301)

Precise lifetime measurement of ${}^{4}_{\Lambda}$ H hypernucleus using a novel production method*

T. Akaishi^{*a*}, H. Asano^{*b*}, X. Chen^{*c*}, A. Clozza^{*d*}, C. Curceanu^{*d*}, R. Del Grande^{*d*}, C. Guaraldo^{*d*}, C. Han^c, T. Hashimoto^{e,*}, M. Iliescu^d, K. Inoue^a, S. Ishimoto^f, K. Itahashi^b, M. Iwasaki^b, Y. Ma^{b,*}, M. Miliucci^{*d*}, R. Murayama^{*b*}, H. Noumi^{*a*}, H. Ohnishi^{*g*}, S. Okada^{*i*}, H. Outa^{*b*}, K. Piscicchia^{*d*,*j*}, A. Sakaguchi^{*a*}, F. Sakuma^{*b*,*}, M. Sato^{*f*}, A. Scordo^{*d*}, K. Shirotori^{*a*}, D. Sirghi^{*d*,*h*}, F. Sirghi^{*d*,*h*}, S. Suzuki^f, K. Tanida^e, T. Toda^a, M. Tokuda^a, T. Yamaga^b, X. Yuan^c, P. Zhang^c, Y. Zhang^c and

Lanzhou, 73000, China Japan Atomic Energy Agener The Paper is submitted, High Energy Agener is submitted, High Energy Agener is submitted, High Energy ARTICLE INFO ABSTRACT

> Keywords: strangeness exchange reaction π^0 tagging hypernuclear weak decay lifetime

We present a new measurement of the ${}^{4}_{\Lambda}$ H hypernuclear lifetime using a novel production reaction, $K^- + {}^{4}\text{He} \rightarrow {}^{4}_{\Lambda}\text{H} + \pi^0$, at the J-PARC hadron facility. We demonstrate, for the first time, the effective selection of the hypernuclear bound state using only the γ -ray energy decayed from π^0 . This opens the possibility for a systematic study of isospin partner hypernuclei through comparison with data from (K^-, π^-) reaction. As the first application of this method, our result for the ${}^4_{\Lambda}$ H lifetime, $\tau(^{4}_{\Lambda}H) = 206 \pm 8(\text{stat.}) \pm 12(\text{syst.})$ ps, is one of the most precise measurements to date. We are also preparing to measure the lifetime of the hypertriton $\binom{3}{\Lambda}$ H) using the same setup in the near future.

³He test data

- Successfully observed the peak from 2 body decays.
- ${}^{3}{}^{A}$ H Cross section sensitive to the binding energy of ${}^{3}{}^{A}$ H.
- 3-body decays are also observed. could be used for the lifetime evaluation.

Ratio of production cross section

Theoritical calculaction(DWIA)

T. Harada and Y. Hirabayashi, Nuclear Physics A 1015 (2021) 122301

 \rightarrow provides a better understanding of the structure of the $_{\Lambda}^{3}H$ bound states J-PARCハドロン研究会2022 2022/03/23

Status & Outlook

- 2020.6: Feasibility demonstration with Helium-4
 - lifetime paper will appear soon
- 2021.5/6: Cross section measurement with Helium-3
 - Analysis is almost finalized (T. Akaishi Ph.D thesis)
- Now: waiting for the beamtime allocation
 - Lifetime measurement of ${}^{3}{}_{\Lambda}$ H (>1000 events in 25 days) in 2023/24?
 - Vertex detector (VFT) will be installed using Koubo budget
 - UU'VV'(45 degrees) spiral 4 layers around the target
 - final assembly is ongoing at the "M-line" company
- 2026-: start experiment with a new solenoid spectrometer

Conceptual design of new CDS

M. Iwasaki (RIKEN) 特別推進 JFY2022—2026

Summary

- Hypertriton provides a benchmark for hypernuclear physics.
- We have explored a new method to investigate the neutron-rich hypernuclei with K⁻ beam & gamma-ray tagging
 - Lifetime with highest precision and different systematics from HI experiments τ (⁴ \wedge H) : 206 ± 8(stat.) ± 12(syst.) ps \rightarrow arXiv:2302.07443
 - lifetime of 3 AH will be measured in 2023/24: ~20 (stat.), < 20 (syst.) ps
 - Cross section (x Branching ratio) of ${}^{4}{}_{\Lambda}$ H, ${}^{3}{}_{\Lambda}$ H
- Kaonic nucleus can be studied using the same dataset: "K^{bar}NNN" signals !
- New larger solenoid spectrometer will provide further oppotunities.