Insights into new physics and nuclear physics from precise isotope shift measurements

Taiki Ishiyama

Koki Ono, Tetsushi Takano, Ayaki Sunaga, Yosuke Takasu, Yasuhiro Yamamoto¹, Minoru Tanaka² and Yoshiro Takahashi

Quantum Optics Group, Kyoto. Univ.

NCTS, Taiwan¹, Osaka Univ.²

Introduction

- Precise isotope shift measurement of 578 nm transition in neutral ytterbium (Yb)
- > Summary

Standard model is one of the most successful physical theory, but also considered incomplete^[1]. e.g.) Dark matter, hierarchy problem, ...

New Yukawa-type interaction has attracted much attention for a long time^[2].

Precise isotope shift measurement was proposed as a sensitive probe for this new physics^[3,4].

Review: ^[1]PTEP 083C01 (2020)., ^[2]Rev. Mod. Phys. **90**, 025008 (2018). Proposal: ^[3]PRD 96, 093001 (2017)., ^[4]Eur. Phys. J. C 77, 896 (2017)

Isotope shift

- Electronic transition: *i*
- Mass number: A, A_0
- Factorization

Electronic factor × Nuclear factor

$$\succ \delta \mu^{A,A_0} = 1/m_A - 1/m_{A'}$$

$$\succ \delta \langle r^2 \rangle^{A,A_0} = \langle r^2 \rangle^A - \langle r^2 \rangle^{A_0}$$

 $\langle r^2 \rangle$: Nuclear mean-square charge radii

Isotope shift and new physics

 New Yukawa-type interaction between electrons and neutrons^[1]

$$V(r) = \alpha_{NP} \frac{\exp(-mcr/\hbar)}{r}$$
$$\alpha_{NP} = (-1)^{s+1} \frac{y_e y_n}{4\pi}$$

 $X y_{e(n)}$: coupling constants between new boson and e⁻ (n)

Mass number: A_0

 $A (> A_0)$

Isotope shifts can include the effect of a new particle.

King linearity

$$\delta v_i^{A,A_0} = K_i \, \delta \mu^{A,A_0} + F_i \, \delta \langle r^2 \rangle^{A,A_0}$$
2 transition *i*, *j*
King linearity^[1]

$$\widetilde{\delta v}_j^{A,A_0} = F_{ij} \times \widetilde{\delta v}_i^{A,A_0} + K_{ij}$$

$$\begin{cases} \widetilde{\delta v}^{A,A_0} = \frac{\delta v^{A,A_0}}{\delta \mu^{A,A_0}} \\ F_{ij} = \frac{F_j}{F_i} & K_{ij} = K_j - F_{ij}K_i \end{cases}$$

[1] W. H. King, J. Opt. Soc. Am. **53**, 638 (1968).

King linearity and new physics

$$\delta \nu_i^{A,A_0} = K_i \ \delta \mu^{A,A_0} + F_i \ \delta \langle r^2 \rangle^{A,A_0}$$
2 transition *i*, *j*

$$\frac{\text{King-linearity}}{\delta \tilde{\nu}_j^{A,A_0}} = F_{ij} \times \tilde{\delta \nu}_i^{A,A_0} + K_{ij}$$

$$\begin{cases} \tilde{\delta \nu}^{A,A_0} = \frac{\delta \nu^{A,A_0}}{\delta \mu^{A,A_0}} \\ F_{ij} = \frac{F_j}{F_i} \\ K_{ij} = K_j - F_{ij}K_i \end{cases}$$

- The new particle violates King linearity^[1]. The new particle violates King linearity^[1]. [1] PRL **120**, 091801 (2018). [2] Eur. Phys. J. C **77**, 896 (2017).
- \rightarrow We can probe the new particle via this linearity test with minimal theoretical input.
- This relationship can be generalized to higher dimension with additional transitions^[2]. \rightarrow We can eliminate higher-order terms as well as $\delta \langle r^2 \rangle$.

Ytterbium (Yb, Z=70)

- ✓ 5 stable nuclear-spin-less isotopes: A=168, 170, 172, 174, 176
- ✓ A lot of ultra-narrow and narrow transitions

Yb is the most suitable element for King linearity test.

Our work

Precise isotope shift measurements of transition (578 nm)

- New constraint on the new particle with other transitions' measurements.
- Insights into nuclear physics: $\delta \langle r^2 \rangle$ and odd-even staggering

> Introduction

Precise isotope shift measurement of 578 nm transition in neutral ytterbium (Yb)

> Summary

Precise isotope shift measurements

- Electronic transition ${}^{1}S_{0} \leftrightarrow {}^{3}P_{0}$ (578 nm = 518 THz)
- Isotopes: all 7 stable isotopes
 Bosonic isotopes: A = 168, 170, 172, 174, 176
 Fermionic isotopes: A = 171, 173

Procedure

- 1. Cooling to O(100) nK
- 2. Trapping in an optical lattice of magic-wavelength
- 3. ³P₀ excitation
- 4. Observation
- 5. (alternate loading)

Precise isotope shift measurements

Optical lattice of magic-wavelength

Result

(A, A')	Isotope Shift (Hz)	Ref.
(168, 170)	1 358 484 476.2(2.2)	
(170, 174)	2 268 486 592.6(1.9)	
(172, 174)	992 714 586.6(2.1)	T I, 's see al
(174, 176)	946 921 774.9(2.9)	I his work
(173, 174)	551 536 104.9(2.3)	
(171, 174)	1 811 281 646.7(2.3)	
	1 811 281 645.8(0.9)	[1-2]

[1] F. Riehle *et al.*, Metrologia **55**, 188 (2018)
[2] N. Poli *et at.*, PRA **77**, 050501 (2008)

The uncertainty of our measurements is a few Hz ($\sim 10^{-9}$).

Constraint on the new physics

Constraint obtained by King linearity test isotope shift measurements of Yb e.g.) 411 nm, 436 nm and 578 nm transitions ∆<u>⊅</u>_β (×10⁷ Hz·u) 10^{-9} (170, 174) -2 5 5 1 0 1 2 5 1 ∆*⊽*β (×10⁷ Hz·u) 168, 170) (172, 174) 10^{-10} X $(J_{u})^{10^{-11}}$ $(J_{u})^{10^{-11}}$ -2-10123 -4-3-2-10 1 2 $\Delta \bar{\nu}_{\alpha}$ (×10⁷ Hz·u) $\Delta \bar{\nu}_{\alpha}$ (×10⁷ Hz·u) -3 -2 -1 0 1 $\Delta \bar{\nu}_{\alpha}$ (×10⁷ Hz·u) (×10¹³ Hz·u) 1.9 n-scatt.^[1] \times (g-2)_e^[2] Hz · u) 1.6 174, 176) -2 $\bar{\nu}_{\gamma}$ 1.5 10^{-13} [1] PRD 77, 034020 (2008)., $(\times 10^{7})$ 1.4 [2] PRL 100, 120801 (2008). $\Delta \bar{\nu}_{eta}$ 10^{-14} -2 -1 0 1 2 2.2 10² 10³ 10^{4} 2.4 $\Delta \bar{\nu}_{\alpha}$ (×10⁷ Hz·u) 2.6 2.8 3.0 ^{D_β} (×10¹³Hz·u) m_{ϕ} (eV) 3.2 2.2

Our constraint is getting close to the most stringent terrestrial bound.

sotope shift Mass shift Field shift

$$\delta v_i^{A,A_0} \sim \frac{K_i \delta \mu^{A,A_0}}{K_i \delta \mu^{A,A_0}} + \frac{F_i \delta \langle r^2 \rangle^{A,A_0}}{F_i}$$

 $\Longrightarrow \delta \langle r^2 \rangle^{A,A_0} = \frac{\delta v_i^{A,A_0} - K_i \delta \mu^{A,A_0}}{F_i}$

•
$$\delta \mu^{A,A_0} = 1/m_A - 1/m_{A'}$$
 [1]

- Electronic factors^[2]
 - $K_i = -288(75) \text{ GHz/fm}^2$
 - $F_i = -10.848(21) \text{ GHz} \cdot \text{u}$
- Higher-order field shift: -5.9%^[3]
 (not included in the above equation)

Isotope A	$\delta \langle r^2 \rangle^{A,176} = \delta \langle r^2 \rangle^A - \delta \langle r^2 \rangle^{176}$			
	578 nm	556 nm ^[2]	Database ^[4]	
168	-0.456(2)	-0.455(2)	-0.5406(3)	
170	-0.321(2)	-0.320(2)	-0.3845(1)	
171	-0.275(1)	-0.274(1)	-0.3273(1)	
172	-0.194(1)	-0.193(1)	-0.2366(1)	
173	-0.1496(8)	-0.1493(7)	-0.1810(1)	
174	-0.0946(5)	-0.0944(5)	-0.1159(1)	

- X Uncertainties of "578 nm" and "556 nm" are limited by theoretical uncertainties of the electronic factor K.
- * "Database" does not include uncertainties of electronic factors.

[1] Chin. Phys. C **45**, 3 (2021). [2] PRA **104**, 022806 (2021).

[3] Num. Data and Funct. Relat. in Science and Tech., Springer (2004). [4] At. Data Nucl. Data Tables 99, 69 (2013).

Insights into nuclear physics: $\delta \langle r^2 \rangle$

Odd-even staggering (OES) in $\delta \langle r^2 \rangle^{[1-2]}$

Odd neutron-number (*N*) isotope has a smaller charge radius $\langle r^2 \rangle$ than the average of its two even-*N* neighbors.

- K (Z=19): [1] Nat. Phys. **17**, 439–443 (2021).
- Hg (Z=80): [2] PRL **126**, 032502 (2021).

171

172

Mass number A

173

> Introduction

Precise isotope shift measurement of 578 nm transition in neutral ytterbium (Yb)

Summary

Summary

- ✓ Precise isotope shift measurements of 578 nm transition in neutral Yb
 - New constraint on a coupling constant of the new particle
 - $\delta \langle r^2 \rangle$ and odd-even staggering