

Takatsugu Ishikawa (ishikawa@rcnp.osaka-u.ac.jp) Research Center for Nuclear Physics (RCNP), Osaka University Contents 1. Introduction

- 2. ηN system
- 3 AN evetom
- 3. ϕN system
- 4. Summary

第8回クラスター階層領域研究会 10 February 2023

Introduction

Internal structure of a baryon

qqq state (elementary-like)

meson-baryon state (molecule-like)

other effective degrees of freedom?

<u>Compositeness X</u>

Overlap of a bound state with the two-body scattering state *X* is directly given by the scattering length *a* and effective range *r*

$$a = \frac{2X}{X+1}R, r = \frac{X-1}{X}R, R = (2\mu B)^{-1/2}$$

S. Weinberg, Phys. Rev. 137, B672 (1965).

X can be extended to near-threshold resonances

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013).

T. Ishika

Low-energy scattering parameters

low-energy scattering is characterized with the S-wave phase shift $\delta(p)$

$$p\cot\delta(p) = \pm \frac{1}{a} + \frac{1}{2}rp^2 + O(p^4)$$

a: scattering length *r*: effective range

 + definition: often used in meson-baryon scattering positive (negative) *a* provides attraction (repulsion)
 a is negative if a bound state exists

 definition: often used in baryon-baryon scattering opposite

Final-state interaction (FSI)

often utilized when a direct scattering experiment is difficult to be realized

1) low relative momentum between the two hadrons of interest

- 2) small or well-known FSI effects for the others 6
- 3) well-known production mechanism effects

Final-state interaction (FSI)

ωN scattering length from ω photoproduction on the proton near the reaction threshold,

T. Ishikawa et al., Phys. Rev. C101, 052201 (R) (2020).

ηN system

Nucleon resonance N(1535)1/2⁻

Chiral partner of the nucleon $N(940)1/2^+$ (elementary-like?)

N(940) and *N*(1535) degenerate at high density and/or high temperature

Low-energy ηN scattering parameters Chiral partner of the nucleon $N(940)1/2^+$ (elementary-like?)

Q. Haider and L.C. Liu, J. Mod. Phys. E 24, 1530009 (2015).

determined from $\pi N \rightarrow \pi N, \pi N \rightarrow \eta N,$ $\gamma N \rightarrow \pi N, \gamma N \rightarrow \eta N$

Im $[a_{\eta N}] \sim 0.25$ fm Re $[a_{\eta N}]$: widely distributed

T. Ishikaw

S.X. Nakamura, H. Kamano, and T. Ishikawa, Phys. Rev. C 96, 042201 (R) (2017).

T. Ishikay

The yields are enhanced at low relative momentum between ηN corresponding to $a_{\eta N}$

- 1) relative momentum: low
- 2) FSI with another: known & small
- 3) production: known & small effects

Resonance-like structure near the ηd threshold in the $\gamma d \rightarrow \pi^0 \eta d$ reaction, T. Ishikawa *et al.*, Phys. Rev. C104, L052201 (2021).

Coherent photoproduction of the neutral-pion and η meson on the deuteron at incident energies below 1.15 GeV,

T. Ishikawa et al., Phys. Rev. C105, 045201 (2022).

 $\gamma d \rightarrow \pi^0 \eta d$

two sequential processes:

$$\gamma d
ightarrow \mathcal{D}_{\mathrm{IV}}
ightarrow \pi^0 \mathcal{D}_{\mathrm{IS}}
ightarrow \pi^0 \eta d \ \gamma d
ightarrow \mathcal{D}_{\mathrm{IV}}
ightarrow \eta \mathcal{D}_{\mathrm{IV}}'
ightarrow \pi^0 \eta d$$

isotropic deuteron emission in γd -CM

<u>nd attraction</u>

bound state or $\Gamma = \Gamma_0$ and $M_{\eta d} < M_{\eta} + M_d$ virtual state $\Gamma = gpc$

Low-energy ηd scattering parameters

$$a_{\eta d} = \pm (0.7^{+0.8}_{-0.6}) + i (0.0^{+1.5}_{-0.0}) \text{ fm}$$

$$r_{\eta d} = \mp (4.3^{+8.6}_{-2.9}) - i (6.7^{+6.0}_{-8.4}) \text{ fm}$$

Consistent with theoretical three-body calculation with $a_{\eta N} = 0.50 + i0.33$ fm:

 $a_{\eta d} = 1.23 + i1.11$ fm Rather weak attraction

Application to nuclear physics

We plan to determine *nn* scattering length at Mainz MAMI for studying charge symmetry breaking using virtual photons from electron scattering.

S.X. Nakamura, T. Ishikawa, T. Sato, arXiv: 2003.02497 (2020).

φN system

Oifferent ϕN scattering lengths

Is VN interaction weak? 10

a_{VN} from photoproduction vector meson dominance model $|a_{\phi p}| = 0.063 \pm 0.010$ fm Okubo-Zweig-lizuka (OZI) rule little admixture of \overline{ss} in N

vector meson photoproduction

- 1. Vector meson properties of the photon
- 2. The *t*-channel exchange process is dominant even at low incident energies

Summary

Final-state interaction

 $\gamma p \rightarrow \omega p$: repulsion

T. Ishikawa et al., PRC101, 052201 (R) (2020).

$ed \rightarrow e'\pi^+nn$: planned experiment at Mainz

S.X. Nakamura et al., arXiv:200302497 (2020).

<u>ηN system</u>

 $\gamma d \rightarrow p \eta n$: analysis still on going S.X. Nakamura et al., PRC 96, 042201 (R) (2017). $\gamma d \rightarrow \pi^0 \eta d$: rather weak ηN attraction T. Ishikawa *et al.*, PRC104, L052201 (2021); PRC105, 045201 (2022).

 $\pi^- p
ightarrow rac{\phi n}{\phi n}$ at J-PARC [P95] $\gamma p
ightarrow \pi^0 rac{\phi p}{\phi p}$ at LEPS2

Backup

\mathbf{Q} Low-energy ϕN scattering

Near-threshold ϕ production

- 1. S-wave ϕN scattering (low relative ϕN momentum) the data taken are relevant to the ϕN scattering length $(a_{\phi N})$
- 2. spin-averaged $a_{\phi N}$ (spin-parity of a ϕN system is $1/2^-$ or $3/2^-$)

Two methods for $a_{\phi N}$ determination:

- 1. Imaginary part of $a_{\phi N}$ Im $[a_{\eta N}]$ determination
- 2. Complex $a_{\phi N}$ $a_{\omega N}$ determination

Method 1

Im $[a_{\eta N}]$ has been determined by fitting a linear function to $\sigma(P_{\eta})$ for $\pi^- p \rightarrow \eta n$

Optical theorem leads:

 $Im[a_{\eta N}] = \frac{p_{\eta}}{4\pi} \sigma_{\eta n}$ $= \frac{p_{\eta}}{4\pi} \left(\sigma_{\eta n \to \pi N} + \sigma_{\eta n \to \pi \pi N} + \sigma_{\eta n \to \pi \pi N} + \sigma_{\eta n \to \eta N} \right)$ $\simeq \frac{3p_{\pi}^{2}}{8\pi p_{\eta}} \sigma_{\pi^{-}p \to \eta n} + \frac{p_{\eta}}{4\pi} \left(\sigma_{\eta n \to \pi \pi N} + \sigma_{\eta n \to \eta N} \right)$ $\geq \frac{3p_{\pi}^{2}}{8\pi p_{\eta}} \sigma_{\pi^{-}p \to \eta n}$ B.A. Arndt, LI. Strakovsky et al.

R.A. Arndt, I.I. Strakovsky et al., PRC74, 045202 (2005)

Fitting result $\sigma_{\pi^-p ightarrow \eta n}/p_{\eta} = 15.2 \pm 0.8 \,\mu\mathrm{b}/\mathrm{MeV}$ 4 R.A. Arndt, I.I. Strakovsky et al., PRC74, 045202 (2005) 3 $\sigma^{tot} (mb)$ 2 A special treatment is required for $a_{\phi N}$ 1 determination since ϕ width is $\sim 4 \text{ MeV}$ 50 150 200 100 p_n^* (MeV/c) $\text{Im}[a_{\eta N}] \ge 0.172 \pm 0.009 \text{ fm}$ T. Ishikaw

$a_{\omega N}$ has been determined from $\sigma(E_{\gamma})$ for $\gamma p \rightarrow \omega p$

complex ωN scattering parameters are determined for the first time

- 1) low relative momentum between ωp
- 2) no FSI effects for others (ωp alone in the final states)
- 3) insensitive production mechanism effects

Method 2

$$\overline{a_{\omega p}} = (-0.97^{+0.16+0.03}_{-0.16-0.00}) + i(+0.07^{+0.15+0.17}_{-0.14-0.09}) \text{ fm}$$

$$r_{\omega p} = (+2.78^{+0.67+0.11}_{-0.54-0.12}) + i(-0.01^{+0.46+0.06}_{-0.50-0.00}) \text{ fm}$$

A small *P*-wave contribution does not affect the obtained values.

- 1. Introduction
- 2. ηN system
- 3. ϕN system
- 4. Summary

Angular distribution $d\sigma/d\Omega_d$ for the first time

angular distribution of deuteron emission in the γd -CM frame

It does not show a strongly backward-peaking behavior but shows a rather flat distribution, suggesting a sequential process

$d\sigma/dt$ at $t = -|t|_{\min}$ as a function of E_{γ} shows a bump at 2 GeV in $\gamma p \rightarrow \phi p$

Bump at 2 GeV in $\gamma p \rightarrow \phi p$

- nucleon resonance
- interference between ϕp and $K^+\Lambda(1520)$ lacksquare
- $K^+\Lambda(1520)$ rescattering
- two-gluon-exchange
- daughter Pomeron ${\color{black}\bullet}$

weak VN interaction

Okubo-Zweig-lizuka (OZI) rule little admixture of $\overline{s}s$, $\overline{c}c$ in the nucleon wave function

Strong VN interaction

correlation function in pp collision at $\sqrt{s} = 13$ TeV Lednický-Lyuboshits model

$$a_{\phi p} = (0.85 \pm 0.34 \pm 0.14) + i(0.16 \pm 0.10 \pm 0.09)$$
 fm
too small imaginary part
 $\phi p \rightarrow K^+ \Lambda, \dots$ T. Ishikawa

Strong VN interaction

T. Ishika

Three puzzles in systems between the vector meson and nucleon

- $d\sigma/dt$ at $t = -|t|_{\min}$ as a function of E_{γ} shows a bump at 2 GeV in $\gamma p \to \phi p$
- Non observation of P_c baryons in $\gamma p \rightarrow J/\psi p$
- Different ϕN scattering lengths are obtained from $\gamma p \rightarrow \phi p$ and from the correlation function

