In-beam γ -ray spectroscopy of Ne isotopes

K. Ishikawa,^{*1} J. Gibelin,^{*2} K. Yoshida, T. Nakamura,^{*1} D. Beaumel,^{*2} N. Aoi, H. Baba,^{*4} Y. Blumenfeld, ^{*2} Z. Elekes, N. Fukuda, T. Gomi,^{*4} Y. Kondo,^{*1} A. Saito,^{*4} Y. Satou,^{*1} E. Takeshita,^{*4} S. Takeuchi,

T. Teranishi,^{*3} Y. Togano,^{*4} V. Lima,^{*2} Y. Yanagisawa, A. M. Vinodkumar,^{*1} T. Kubo and T. Motobayash

NUCLEAR REACTIONS, Al(²⁶Ne,^{26-x}Ne^{*}), Pb(²⁶Ne,^{26-x}Ne^{*}), in-beam γ -ray spectroscopy, Coulomb dissociation

We performed the study of the low-lying E1 strength of the neutron-rich ²⁶Ne nucleus by using the Coulomb dissociation and excitation reactions. The dipole strength is expected to be much more fragmented below the giant dipole resonance region¹⁾. In the case of ²⁶Ne, the low-lying excitation is suggested to be a pygmy of the giant dipole resonance. In this report, we present a preliminary result of the Coulomb excitation part in which we search for such resonance below the one-neutron emission threshold.

The experiment was performed at RIKEN Projectilefragment Separator RIPS. The primary beam of ⁴⁰Ar at 95 MeV/nucleon bombarded a 2-mm-thick Be target to produce the secondary beam of 26 Ne. The average intensity and purity of the $\rm ^{26}Ne$ beam were about 6 kcps and 80%, respectively, with 58 MeV/nucleon just before the reaction target. The secondary beam was identified through energy loss and time-of-flight measurements. The scattering angles of incoming particles were determined by two PPAC's located upstream of the reaction target. Pb and Al targets having thicknesses of 230 $\mathrm{mg/cm^2}$ and 130 $\mathrm{mg/cm^2}$, respectively, were used for estimating the Coulomb and nuclear excitation components. Particle identification of the fragments passing through the target was performed using four-layer Si strip detectors composed of ΔE and E counters located at about 1.2 m downstream of the target. The first two layers were composed of 8 Si detectors which were used for position detection. The position and intrinsic energy resolution of ΔE counters were 5 mm and 2% (FWHM), respectively. The last two layers were the E counter composed of 8 Si(Li) detectors with 3 mm thickness, and an intrinsic energy resolution of 3% (FWHM). The neutrons produced in the reaction were detected by the neutron wall. The neutron wall had 4 layers located 3 m downstream of the target. Each layer had 29 plastic scintillators. The analysis of the neutrons is not used here and is reported elsewhere. The γ -rays emitted from outgoing nuclei were detected by 152 NaI detectors, DALI2. For 2 MeV γ -rays, the efficiency is calculated to be around 10% with an intrinsic energy resolution of 7%(FWHM).

A preliminary γ -ray spectrum for the ²⁶Ne + Pb

*³ University of Tokyo (CNS), RIKEN Campus

reaction is shown in Fig. 1. The Doppler shift due to the velocity of ²⁶Ne is corrected for. We have observed a peak at 2020 keV corresponding to the excitation to the first 2⁺ state. The B(E2) of this transition was previously measured at MSU^{2} , so that we can use this excitation as a reference. Further analysis to extract the E1 strength below the one-neutron threshold is now in progress.

Fig. 1. Energy spectrum of Doppler-corrected γ -rays detected in coincidence with the ²⁶Ne ejectile. The peak at around 2020 keV is clearly seen.

References

- 1) A. Leistenschneider et al.: Phys. Rev. Lett ${\bf 86}, 24(2001).$
- 2) B. V. Pritychenko et al.: Phys. Lett. B461, 322(2001).

^{*1} Department of Physics, Tokyo Institute of Technology

^{*2} Institut de Physique Nuclaire, Orsay, France

^{*4} Department of Physics, Rikkyo University