report for NaI analysis

Kazuhiro Ishikawa

December 21, 2003

Contents

1	analysis of NaI				
	1.1	Energy calibration	3		
	1.2	timing calibration	4		
	1.3	appendix of NaI	4		
		$1.3.1 {}^{241}\text{Am}{}^{-9}\text{Be} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4		
		1.3.2 other radio active source \ldots \ldots \ldots \ldots \ldots \ldots	6		

1 analysis of NaI

1.1 Energy calibration

The analog data of DALI were calibrated by using standard γ -ray sources of 137 Cs (662 keV), 60 C0 (1173 keV and 1333 keV) and 22 Na(511 keV and 1275 keV). By fitting the energies with a linear function of channels ,calibration functions to convert channel to energy were deduced for each crystal of DALI. The energy calibration was checked by comparing the photo-peak positions in the energy spectra summed up for all the 152 NaI(Tl) scintillation detectors with the energies of the standard sources.

source	Energy(keV)	$\exp \text{Energy}(\text{keV})$	deviation(keV))
^{137}Cs	661.660	660.7	-0.3
$^{60}C0$	1173.237	1174.	0.6
	1332.501	1335.	2.5
²² Na	1274.532	1276.	1.5
	511	506.2	-4.8
$^{9}\text{Be}+^{241}\text{Am}$	4439.1	4428.	-11.1
	3928.1	3955.	27.
	3417.1	3402.	-15.

Figure 1: ch vs keV

function is

$$E_{\gamma} = aE_{ch} + b \tag{1}$$

a and b are constant parameters.

1.2 timing calibration

I must arrange a timing of NaI detectors that these are same timing. This difference is caused by mainly different length of cables at each detectors.

Figure 2: DALI timing (ns) after calibration

$$y = P1exp[-\frac{(T - P2)^2}{2P3^2}] + P4$$
 (2)

$$T = T_{F2} - T_{Dali} \tag{3}$$

P4 is independent of a time. So this is interpreted as background components. So by rejecting this region which independent of physics that, $\rm S/N$ ratio will be up.

1.3 appendix of NaI

I used radioactive sources of ¹³⁷Cs, ²²Na, ⁶⁰Co and ²⁴¹Am-⁹Be in this experiment.

In that composition which include $^{241}\mathrm{Am}$ and $^{9}\mathrm{Be},$ the following reaction is performing.

$$\label{eq:alpha} \begin{array}{l} ^{241}\mathrm{Am} \rightarrow \alpha \,+\, ^{237}\mathrm{Np} \\ \alpha + ^{9}\mathrm{Be} \rightarrow {}^{12}\mathrm{C}^{*} + \mathrm{n} \end{array}$$

 $^{12}C^*$ is immediately de-excited to the ground state though emitting γ -ray at 4.391 MeV. And in high energy γ -ray, pair productions are much arisen compared to the low energy.

$$\gamma \rightarrow e^- + e^+$$

 e^+ is annihilated when this catches e^- within a matter. Two γ -ray,511 keV emitted after that. If NaI detector deposits energy from 2 γ -ray and e- accompanied from pair creation , deposited energy is same as γ -ray energy from de-excited states. But if one γ -ray escapes from the detector and all other particle energy from pair creation is detected , NaI deposits

$$E_{\text{detected}} = E_{\gamma} - m_e c^2 \tag{4}$$

If two γ -ray escapes from that, NaI deposits

$$E_{\text{detected}} = E_{\gamma} - 2m_e c^2 \tag{5}$$

So from $^{12}\mathrm{C}^*,$ 3 type spectrum of energy ,4.4391 keV, 3.9281 keV and 3.417 keV is deposited by the NaI detector.

1.3.2 other radio active source

 γ -ray is emitted from excited states of daughter nuclei after β decay table of radioactive sources in my experiment is shown following.

Only $^{22}\mathrm{Na}$ decay though β minus decay

22
Na $\rightarrow ^{22}$ Ne + $e^+ + \overline{\nu_e}$.

So 511 keV γ -ray caused by this process.

Figure 4: $\gamma\text{-ray from}\ ^{12}\mathrm{C}*$ and escape peaks