## report

Kazuhiro Ishikawa December 21, 2003

Contents

### 1 Doppler correction

#### 1.1 introduction

In this experiment we detected  $\gamma$ -rays emitted from moving reaction products with a velocity v/c~0.32. Hence Doppler-shifted  $\gamma$ -ray energies were measured by the  $\gamma - ray$  detectors. The transformation in the rest frame of the incident particle  $E_{\gamma}^{proj}$  and the  $\gamma$ -ray energy in the laboratory frame  $E_{\gamma}^{lab}$  is following.



Figure 1: Schematic description of in-beam  $\gamma$  spectroscopy. The  $\gamma$ -ray detection angle with respect to the beam axis in the labratory frame  $\theta$ .

$$\left(\begin{array}{c}E_{\gamma}^{\rm proj}/c\\ {\bf P}^{\rm proj}\end{array}\right) = \left(\begin{array}{cc}\gamma & -\beta\gamma\\ -\beta\gamma & \gamma\end{array}\right) \left(\begin{array}{c}E_{\gamma}^{\rm lab}/c\\ {\bf P}^{\rm lab}\end{array}\right)$$

- $E_{\gamma}^{\text{proj}}:\gamma$  energy in the rest frame of the incident particle
- $\mathbf{P}^{\text{proj}}$ :  $\gamma$  particle momentum in the rest frame of the incident particle
- $E_{\gamma}^{\text{lab}}:\gamma$  energy in the laboratory frame
- $\mathbf{P}^{\text{lab}}$ : $\gamma$  particle momentum in the laboratory
- $\beta$ :relativistic velocity
- $\gamma$ :Loren factor  $1/\sqrt{1-\beta^2}$

$$E_{\gamma}^{\rm proj}/c = \gamma E_{\gamma}^{\rm lab}/c - \gamma \beta \mathbf{P} \tag{1}$$

$$\beta = \beta \cos \theta \tag{2}$$

$$E_{\gamma}^{\text{lab}} = h\nu \tag{3}$$

$$\mathbf{P} = \frac{h}{\lambda} = \frac{h\nu}{c} \tag{4}$$

$$\frac{P}{E_{\gamma}^{\text{lab}}} = \frac{1}{c} \tag{5}$$

Therefore,

$$E_{\gamma}^{\text{proj}} = E_{\gamma}^{\text{lab}} \gamma (1 - \beta \cos \theta) \tag{6}$$

#### 1.2 result

# 1.3 Energy resolution of the Doppler corrected $\gamma$ -ray spectrum

Due to the finite accuracy of angular information and the velocity spread of the projectiles, the  $\gamma$ -ray energy peaks were broadened compared to the intrinsic energy resolution of the detectors. Based on equation, the resolution  $E_{\gamma}^{proj}$  is approximated,

$$\left(\frac{\Delta E_{\gamma}^{\text{proj}}}{E_{\gamma}^{\text{proj}}}\right)^{2} = \left(\frac{\beta \sin \theta_{\gamma}^{\text{lab}}}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\Delta \theta_{\gamma}^{\text{lab}}\right)^{2} + \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\Delta \beta}{\beta}\right)^{2} + \left(\frac{\Delta E_{\gamma}^{\text{lab}}}{E_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}}}}\right)^{2} \left(\frac{\beta \gamma^{2} (\beta - \cos \theta_{\gamma}^{\text{lab}})}{1 - \beta \cos \theta_{\gamma}^{\text{lab}$$

From the correlation between energy and  $\sigma$ , the intrinsic energy resolution of the detectors is introduced in following.

$$\sigma = 1.9\sqrt{E - 26.97}$$
(8)

The energy resolutions are evaluated using realistic condion,  $\beta$  of 0.32 and  $\gamma$  of 1.06 with  $\Delta \theta_{\rm max}$  of 20 degrees in labratory frame of 90 degrees and  $\Delta theta_{\rm min}$  of 0 degrees in labratory frame of 0 degrees respectively,  $\Delta \beta / \beta$  of 11.5% including the energy loss in the secondary target.



Figure 2: Energy spectrum of  $\gamma$  rays detected in coincidence with the <sup>26</sup>Ne reaction products.(right)Energy spectrum in laboratory frame.(left)Doppler-corrected  $\gamma$  rays energy spectrum with  $\beta$ =0.32. The peaks at 2020 keV is clearly seen while they are vague in right indicating a good quality of the Doppler correction.



Figure 3: Gamma-ray energy spectra obtained in coincidence with the reaction products 26 Ne,  $^{25} \text{Ne}$ .



Figure 4: Gamma-ray energy spectra obtained in coincidence with the reaction products 24 Ne, <sup>23</sup>Ne.



Figure 5: Ne fragments gamma ray spectrum

Figure 6: Gamma-ray energy spectra obtained in coincidence with the reaction products 22Ne.

| fragment         | E(exp)[keV] | $\sigma$ | E(previous)[keV] | deviation[keV] | state                 |
|------------------|-------------|----------|------------------|----------------|-----------------------|
| <sup>26</sup> Ne | 2020        | 109      | 2020             | 0              | $(2^+ \to g.s)$       |
| <sup>25</sup> Ne | 1688        | 89       | 1702             | -14            | unkown                |
| <sup>24</sup> Ne | 1978        | 98       | 1981.6           | 3.6            | $2^+ \rightarrow g.s$ |
| <sup>23</sup> Ne | 1716        | 134      | 1701             | 15             | $7/2 \rightarrow g.s$ |
|                  | 1294        | 170      | 1298             | -4             | $5/2^+ \to 1/2^+$     |
|                  | 1001        | 159      | 1017             | -16            | $1/2^+ \to g.s$       |
|                  | 785         | 120      | 805              | -20            | $3/2^+ \to 1/2^+$     |
| <sup>22</sup> Ne | 1263        | 85       | 1274.5           | -11            | $2^+ \rightarrow g.s$ |
|                  | 848         | 171      | -                | -              | -                     |

Figure 7: Gamma-ray energies of Ne isotopes from A of 26 to A of 22. The energies deduced in the present work are compared with the literature values.

| source               | $^{137}Cs$ | $^{60}C$ |      | <sup>22</sup> Na |      | Am-Be |      |      |
|----------------------|------------|----------|------|------------------|------|-------|------|------|
| Energy[keV]          | 661        | 1173     | 1332 | 511              | 1274 | 3417  | 3928 | 4428 |
| $\sigma[\text{keV}]$ | 26         | 32       | 36   | 25               | 36   | 84    | 105  | 95   |

Figure 8: The energy resolution of obtained value in standard gamma souce.

| fragment            | <sup>26</sup> Ne | $^{25}$ Ne | <sup>24</sup> Ne | <sup>22</sup> Ne |
|---------------------|------------------|------------|------------------|------------------|
| Energy[keV]         | 2020             | 1688       | 1978             | 1263             |
| $\sigma[exp][keV]$  | 109              | 89         | 98               | 85               |
| $\sigma[calc][keV]$ | 121              | 102        | 119              | 78               |

Figure 9: Energy resolution  $\sigma$  of obtained Doppler correted spectrum. The  $\sigma$  values in the present work are compared with the calcurated value.

unregistered



Figure 10: Energy resolutions for the function of energy of  $\gamma\text{-ray}$  emitted from moving souces .



Figure 11: Energy resolutions for 2 MeV  $\gamma\text{-ray}$  emitted from moving souces with v/c $\approx\!0.32$