report

Kazuhiro Ishikawa

December 21, 2003

Contents

1	effic	iency calculation	2
	1.1	calculation	2
	1.2	appendix	9

1 efficiency calculation

1.1 calculation

I used the radio active source data to estimate the efficiency. The ¹³⁷Cs, ²²Na and ⁶⁰Co was used. Efficiency is estimated following equation.

$$\epsilon = \frac{Yield_{\text{detected}}}{Yield_{\text{emission}}} \tag{1}$$

source	$^{137}\mathrm{Cs}$	^{22}Na	$^{60}\mathrm{Co}$
Energy[keV]	661	1173,1332	511,1274
intensity(T=0)[kBq]	46.6	359	41.2
half time $(t_{1/2})$ [year]	30.07	2.6019	5.2714
emission probability[%]	0.8521	0.999,0.9998	0.9994

Firstly, I calculate the efficiency from the source run.

source	$^{137}\mathrm{Cs}$	$^{60}\mathrm{C}$		$^{22}\mathrm{Na}$	
Energy[keV](exp)	661	1173	1332	511	1274
$Yiled_{ m emission}$	4.25×10^7	3.82×10^7	3.82×10^{7}	2.20×10^{8}	1.10×10^8
$Yiled_{ m detected}$	3.17×10^4	1.96×10^{5}	1.77×10^{5}	6.40×10^5	1.74×10^5
$Yiled_{detected}(calibrated)$	1.35×10^{6}	6.31×10^6	5.70×10^6	7.80×10^{7}	2.14×10^{7}
efficiency[%]	31.7	16.5	14.9	35.4	19.4

 $Yiled_{detected}(calibrated)$ means

 $Yiled_{\text{detected}}(\text{calibrated}) = \frac{\text{ungatedevent}}{\text{gatedevent}} * (\text{DS} - \text{Dalitrigger}) * Yiled_{\text{detected}}$

- $\bullet\,$ DS-dali trigger: Down scale factor
- ungatedevent :livetime of Dali trigger
- $Yield_{511} = 2 * Yield_{1274 \text{KeV}}$ in $^{22} \text{Na}$

I calculated the efficiency by using the ${\bf GEANT}$ code which reproduces well the measured efficiencies.

Energy[keV]	661	1173	1332	511	1274	$E(2020 \text{kev}; 2^+ \rightarrow \text{g.s})$
efficiency[%](calc)	31.0	20.2	18.5	38.4	19.1	13.6

Figure shows plot of photo-peak efficiencies as a function of γ -ray energies. The solid line was calculated by the **GEANT** code. For 2 MeV, efficiencies was estimated attained to be about 18 % and this curve is within the 15%ddeviation. This concluded that this systematic error $\Delta\epsilon$ is 15%.

In 2 Mev γ -ray, I estimated 13.9 % of the efficiency and determined 15% of the systematic error from this figure.

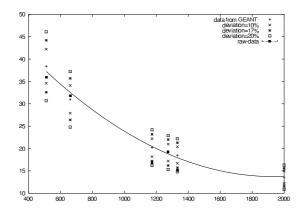


Figure 1: comparison calculation data from raw data

1.2 appendix

$$A = -\tau \frac{dN}{dt} = \tau N \tag{2}$$

$$N(t) = N(0)e^{-t/\tau} \tag{3}$$

$$\tau = t_{1/2} \log 2 \tag{4}$$

- A:the number of decay
- τ :decay constant
- $t_{1/2}$:half time
- N(t):Yield