report for SSD

Kazuhiro Ishikawa

December 21, 2003

Contents

1	silic	on-strip detector	3
	1.1	introduction	3
	1.2	Energy Calibration $ch \Rightarrow MeV \dots \dots \dots \dots \dots \dots \dots$	4
	1.3	How to identify the particle	4

1 silicon-strip detector

1.1 introduction

Particle identification of the fragments passing through the target was performed using four-layer-Si-strip-detectors composed of ΔE and E counters located at about 1.2 m downstream of the target. First two layers were composed of 8 Si detectors which were used for position detection. The position and intrinsic energy resolution of ΔE counters were about mm and 2%(FWHM),respectively. The last two layers was the E counter composed of 8 Si(Li) detectors with 3 mm thickness and has its intrinsic energy resolution of 3%(FWHM).

Figure 1: ssd parts

Figure 2: ssd facile picture of readout position

1.2 Energy Calibration $ch \Rightarrow MeV$

The Energy calibration of each Silicon detectors was performed by using 25 Ne beam with 60 MeV/A, 55 MeV/A, and 50 MeV/A respectively. Figure shows the table which is correlation between ch and Energy[MeV].

table of calibration 25 Ne beam[MeV/A]								
E_{D2}	$\Delta E_{\rm total}$	deviation	E_{total}	deviation				
60.04 MeV/Acal	10.16		50.0					
exp	10.03	-0.13	49.3	-0.7				
55.41 MeV/A cal	11.19		43.91					
exp	11.20	-0.01	43.96	0.05				
49.55 MeV/A cal	13.48		36.81					
exp	13.51	0.03	36.83	-0.02				

1.3 How to identify the particle

 $\Delta E_{\rm total}$ is defined to the total energy loss of the fragments passing thought the ΔE counters and $E_{\rm total}$ is defined to the total kinetic energy of the fragments in front of the SSD counters. Therefore,

$$\Delta E_{\text{total}} = \Delta E_{\text{Xback}} + \Delta E_{\text{Yback}} \tag{1}$$

$$E_{\text{total}} = \Delta E_{\text{total}} + E \tag{2}$$

- ΔE_{total} : the total energy of the *DeltaEcounters*
- $\Delta E_{\text{Xback}}, \Delta E_{\text{Yback}}$: the energy loss of the first layer and two layer respectively
- E_{total} : the total energy of the fragments
- E:the energy of the last E counter

In the energy loss of charged particle passing though the material,

$$\Delta E \simeq Z^2 \mathrm{TOF}^2 \tag{3}$$

- Z:the charge of the fragments
- TOF: the time of flight of the fragments

In the total energy of the fragments, this energy is classically equal to the kinetic energy.

$$E_{\rm total} \simeq \frac{A}{\rm TOF^2}$$
 (4)

• A:the mass number of the fragments

Therefore,

$$E_{\rm total}\Delta E \simeq AZ^2$$
 (5)

This picture shows the identification of the fragments from $^{26}\mathrm{Ne}$ incident beam at 58.7MeV/A.

To identify clearly, I did following way which is referred from R.H.stokes et al,ReV.Sci.Instr.29.61(1958). Firstly the PID is defined following.

 $E_{\rm total}$ is redefined following

$$E_{\text{total}} = E + \frac{1}{2}\Delta E \tag{6}$$

Figure 3: $\Delta E counters vs E counters$

Therefore,

$$PID = \Delta E (E + \frac{1}{2}\Delta E)^a \simeq AZ^2$$
(7)

a is parameter and the coefficient 1/2 means the mean energy loss of the DeltaE.

$a\simeq 0.75(in$	this	analysis)
-------------------	------	-----------

RUN	²⁶ Ne+Pb	²⁶ Ne+Al	²⁶ Ne+emp
²⁶ Ne	0.238	0.242	0.260
25 Ne	0.257	0.249	0.258
²⁴ Ne	0.242	0.225	0.238
²³ Ne	0.263	0.229	0.229
²² Ne	0.232	0.217	0.217
²¹ Ne	0.251	0.228	0.226
²⁰ Ne	0.235	0.215	0.222

Figure 4: the distribution of ssd in Ne isotope at Pb target in beam $\otimes \mathrm{ssd} \otimes \mathrm{neutron}$

Figure 5: the distribution of ssd in Ne isotope at Al target in beam $\otimes \mathrm{ssd} \otimes \mathrm{neutron}$

Figure 6: the distribution of ssd in Ne isotope at empty target in beam $\otimes {\rm ssd} \otimes {\rm neutron}$

Figure 7: the distribution of ssd in Ne isotope at Pb target in beam trigger

Figure 8: the distribution of ssd in Ne isotope at Al target in beam trigger

Figure 9: the distribution of ssd in Ne isotope at empty target in beam trigger