陽子と G10_FR4、CFRP その他の物質との相互 作用

Y. Satou

August 2, 2024

Abstract

陽子がプラスチックシンチレータ,炭素、エポキシ、G10_FR4、CFRP 等を 通過する際のエネルギー損失、クーロン多重散乱、エネルギーストラグリング、 及び、これらの物質中での飛程を求めた。利用可能な複数のコードで計算を実施 し、結果の相互の一致の度合いを確認した。

1 はじめに

幾つかの物質を通過する際の陽子のエネルギー損失、クーロン多重散乱、及びエネル ギーストラグリングの効果を複数のコードを用いて評価した。また、これらの物質中 での飛程の評価も行った。

用いた Fortran code は IELOS (INTENSITY の緒サブルーチンを援用したエネル ギー損失計算コード), ELOS (RANGELBL の rdedx サブルーチンを援用したエネルギー 損失計算コード)、RANGELBL である。その他、NIST(National Institute of Standards and Technology) の pstar [1]、LISE 等も適宜(考慮した物質が登録されている場合) 利用した。

エポキシ、G10_FR4、CFRP 等の各種物質のエネル ギー損失等の計算に必要なパラメータ

今回考慮した物質と、荷電粒子との電磁相互作用を規定する緒パラメータを表 1に まとめる。 $\langle Z/A \rangle$ は $\langle Z/A \rangle = Z_{\text{eff}}/A_{\text{eff}}$ とした。ここで Z_{eff} と A_{eff} は Leo [2] の、 それぞれ、式 (2.40) と式 (2.41) で与えられるものとする。表 1 中の $\langle A \rangle_{\text{mf}}$ と $\langle Z \rangle_{\text{mf}}$ は、それぞれ、質量分率 (w_i : mass fraction) の重み付き平均、 $\langle A \rangle_{\text{mf}} = \sum w_i A_i$ と $\langle Z \rangle_{\text{mf}} = \sum w_i Z_i$ 、で求めた。ここで、 各元素の質量分率は Leo [2] の式 (2.39) で与 えられる。表 1 中の $\langle A \rangle^*$ は $\langle A \rangle^* = \langle Z \rangle_{\text{mf}} / \langle Z/A \rangle$ で算出した。

表 1 中の $\langle A \rangle_{af}$ と $\langle Z \rangle_{af}$ は、それぞれ、元素毎の(相対)原子数 (a_i : number of atoms) の重み付き平均、 $\langle A \rangle_{af} = \sum a_i A_i / \sum a_i (= A_{eff} / \sum a_i) \& \langle Z \rangle_{af} = \sum a_i Z_i / \sum a_i (= Z_{eff} / \sum a_i)$ 、で求めた。

ここでは、 $\langle A \rangle_{af}$ と $\langle Z \rangle_{af}$ の値を収めた物質ファイルをデフォルトファイル、 $\langle A \rangle^*$ と $\langle Z \rangle_{mf}$ の値を収めた物質ファイルをオルタナティブファイル (alt file) として、物質ファイルに区別を設けた。デフォルトファイルとオルタナティブファイルの計算結

果は、エネルギー損失、Particle Data Handbook と PDG の方法に基づくクーロン 多重散乱、及び、エネルギーストラグリングに於いて本質的な変わりは無かった。一 方で、Anne-1988 の方法 [3] に基づくクーロン多重散乱の計算結果が両者で比較的顕 著に異なった。デフォルトファイルの結果が LISE の計算結果と類似する傾向が、特 に複合物質 (composite material) に於いて見受けられた。この観察から、今後、原 子数分率 (atomic fraction) に基づいて平均化を行った $\langle A \rangle_{af}$ と $\langle Z \rangle_{af}$ を各種計算の 基礎に据える(出発点とする)ことにする¹。

放射長 (radiation length X_0) は元素の質量分率を用いて、Leo [2] の式 (2.84) より 求めた。

エポキシ (epoxy) の化学組成は、Tosello 氏の Web ページ [4] に記載のものを参 考にした。PDG/LBL の Epotek-301-1 の質量分率の表 [5] は、窒素の分率が過小評 価されている様に見受けられた。上述の Tosello 氏の Web ページ [4] の組成から独自 に導いた関連緒パラメータを Web ページ [6] に示す。今回の計算では、平均イオン 化ポテンシャルを除き、この表に記載の値を用いた。

G10_FR4 の化学組成は、Tosello 氏の Web ページ [7] に記載のものを参考にした。 PDG/LBL の G10_FR4 の質量分率の表 [8] は、水素 (H)、炭素 (C)、窒素 (N) の質量 分率が相互に入れ替わっている様に見受けられた(これに加え、上述のエポキシの組 成における窒素の分率の過小評価が加わる)。Tosello 氏の Web ページ [7] の組成か ら独自に導いた関連緒パラメータを Web ページ [9] に示す。今回の計算では、この 表に記載の値を用いた。

CFRP の化学組成は、Tosello 氏の Web ページ [10] に記載のものを参考にした。す なわち、炭素繊維とエポキシ(Epotek 301-1)の質量混合比として 0.706535: 0.293465 を仮定した。また、エポキシと炭素の平均イオン化ポテンシャルとして、それぞれ、 76.7 eV [5] と 81.0 eV [11] を採用した。これらの前提のもとで計算される、関連す る Atomic & Nuclear 特性を表 2 に示す。また、関連元素の質量分率と(相対)原子 数を表 3 に示す。

炭素繊維とエポキシの混合比が他の場合の評価結果を補遺 A に示す。

3 エネルギー損失の計算結果

厚さ 10 mm のプラスチックシンチレータ (Polyvinyltoluene) 中でのエネルギー損 失の、入射陽子のエネルギー (MeV/u) 依存性の計算結果を図 1 に示す。INTENSITY (plastic) (赤実線)、INTENSITY (C₉H₁₀) (青波線)、elos (緑点線)、及び LISE (黒塗 り点)の計算結果は相互に良く一致する。

厚さ 2.4 mm の炭素 (密度 1.8 g/cm³)、エポキシ、G10_FR4、及び CFRP に対 する陽子のエネルギー損失の入射エネルギー依存性の計算結果を、それぞれ、図 2、 図 3、図 4、及び図 5 に示す。INTENSITY、elos、及び LISE(G10_FR4 と CFRP を 除く)の計算結果は、陽子エネルギーが 30 MeV 以上で良く一致する。

厚さ 100 μm の銅に対する陽子のエネルギー損失の入射エネルギー依存性の計算 結果を図 6 に示す。三つのコードの結果の一致の度合いは良い。

¹尚、この方法は ENEW に於いても採用されている様である

Holor Fire		$\langle A \rangle_{ m af}$	$\langle Z angle_{ m af}$		密度	固体 (0)		Ι	X_0
彻貝	ノアイル治	$\langle A angle^{ m mf} \langle A angle^{ m s}$	$\langle Z angle_{ m mf}$	$\langle S/Z \rangle$	(g/cm^3)	or 気体(1)	μ	(eV)	$(\mathrm{mg}/\mathrm{cm}^2)$
	plastic.dat	6.23024	3.37316						
Polyvinyltoluene		11.07547		0.54142	1.032	0	1.0	64.7	43900.0
	plastic_alt.dat	10.29704	5.57500						
	C9H10.dat	6.21981	3.36842						
$ m C_9H_{10}$		11.07221		0.54156	1.032	0	1.0	64.7	43910.0
	C9H10_alt.dat	10.29153	5.57352						
炭素 (1.8 g/cm ³)	C_1_8.dat	12.01070	6.00000	0.49954	1.800	0	1.0	78.0	42700.0
D	epoxy.dat	6.37915	3.45659						
Epuxy (E _{moto} l, 901-1)		11.89896		0.54186	1.190	0	1.0	76.7	41710.0
(1-100 yanoda)	epoxy_alt.dat	11.05139	5.98828						
	G10_FR4.dat	10.90206	5.61071						
G10-FR4		18.94140		0.51465	1.800	0	1.0	110.40	30180.0
	G10_FR4_alt.dat	18.32866	9.43278						
	CH2.dat	4.67557	2.66667						
CH_2		10.42933		0.57034	0.940	0	1.0	57.4	44770.0
	CH2_alt.dat	9.26003	5.28137						
	Water.dat	6.00500	3.33333						
H_2O		14.32141		0.55509	1.000	0	1.0	75.0	36080.0
	Water_alt.dat	13.00080	7.21665						
Cu	Cu.dat	63.54600	29.00000	0.45636	8.960	0	1.0	322.0	12860.0
ממשט	CFRP.dat	9.53932	4.88384						
OF DF (MEE 1/FII33 A) [10]		11.97791		0.51197	1.630	0	1.0	79.64	42400.0
	CFRP_alt.dat	11.71274	5.99656						
	CFRP2.dat	9.33296	4.79064						
CFRP [13]		11.97439		0.51330	1.630	0	1.0	79.50	42370.0
	CFRP2_alt.dat	11.68158	5.99619						

Table 1:エネルギー損失の計算に用いる各物質の物理化学定数。

Quantity	Value	Units	Misc.
$\langle Z/A \rangle$	0.51197	$mol g^{-1}$	
Density	1.63	${ m g~cm^{-3}}$	
Mean ecitation energy (I)	79.64	eV	$76.7~{\rm eV}$ for Epotek-301-1
Radiation length (X_0)	42.40	${\rm g~cm^{-2}}$	

Table 2: CFRP (M55J/EU334) [10] の Atomic & Nuclear 特性。

Table 3: CFRP (M55J/EU334) に含まれる元素の質量分率と(相対)原子数。

Element	Z	Atomic number	Α	Mass fraction
		(Relative)		
0	8	0.140188	15.9990	0.055956
Η	1	1.000000	1.00800	0.025148
С	6	3.031895	12.0107	0.908508
Ν	7	0.029725	14.0070	0.010388

4 クーロン多重散乱の計算結果

厚さ 10 mm のプラスチックシンチレータ (Polyvinyltoluene) 中でのクーロン多重散 乱 (σ値、plane)の、入射陽子のエネルギー (MeV/u) 依存性の計算結果を図 7 に示 す。INTENSITY で計算される四通りの計算結果(Particle Data Handbook(赤線)、 Anne-1988(青線)、PDG(緑線)、alt file を用いた Anne-1988(青破線))と LISE (黒点)の結果は、定性的には同様のエネルギー依存性を示す。

厚さ 2.4 mm のプラスチックシンチレータ、炭素 (密度 1.8 g/cm³)、CH₂、水 (H₂O)、エポキシ、G10_FR4、及び CFRP(M55J/EU334) に対する陽子のクーロン多重散乱の入射エネルギー依存性の計算結果を、それぞれ、図 8、図 9、図 10、図 11、図 12、図 13、及び図 14 に示す。厚さ 100 μ m の銅に対する陽子のクーロン多重散乱の入射エネルギー依存性の計算結果を図 15 に示す。各種のコード/モデルの結果の相互の一致は概ね良い。

クーロン多重散乱に関しては、特に複合物質について、比較的ではあるが、Anne-1988(青線)と LISE(黒点)の結果が良く一致する傾向が見られた。

5 エネルギーストラグリングの計算結果

厚さ 10 mm のプラスチックシンチレータ (Polyvinyltoluene) 中でのエネルギーストラ グリング (σ 値) の、入射陽子のエネルギー (MeV/u) 依存性の計算結果を図 16 に示 す。INTENSITY で計算される二通りの計算結果 (Schmidt, Tschalar (赤線)、Ahlen, Bichsel (青線)) と LISE (黒点)の結果は定性的には同様のエネルギー依存性を示す。

厚さ 2.4 mm の炭素 (密度 1.8 g/cm³)、エポキシ、G10_FR4、及び CFRP に対する エネルギーストラグリングの入射エネルギー依存性の計算結果を、それぞれ、図 17、 図 18、図 19、及び図 20 に示す。厚さ 100 μm の銅に対する陽子のエネルギースト ラグリングの入射エネルギー依存性の計算結果を図 21 に示す。各種のコード/モデル の結果の相互の一致は概ね良い。

6 飛程の計算結果

プラスチックシンチレータ (Polyvinyltoluene)、炭素 (密度 1.8 g/cm³)、エポキシ、G10_FR4、CFRP、CH₂、水 (H₂O)、及び銅における陽子の飛程 – エネルギー曲線 を、それぞれ、図 22、図 23、図 24、図 25、図 26、図 27、図 28、及び図 29 に示 す。INTENSITY、NIST(エポキシ、G10_FR4、及び CFRP は除く), RANGELBL,及 び LISE (G10_FR4 と CFRP は除く)の計算結果は相互に非常に良く一致する。CH₂ と水 (H₂O) に対する計算は、化合物に対する計算の参照目的の為になされた。

図 30 と図 31 に、それぞれ、プラスチックシンチレータと炭素 (1.8 g/cm³) の陽 子に対する飛程 – エネルギー曲線の低エネルギー領域 (陽子エネルギーが 70 MeV/u 以下) における拡大図を示す。複数の方法に基づく計算結果は互いに良く一致する。 尚、INTENSITY を用いた計算では、設定される限界値以下のエネルギーの陽子の飛程 への寄与は E.V. Benton & R.P. Henke の方法 [12] を用いて評価されるが、ここでは 限界値は 20 MeV/u に設定された。

Figure 1: 厚さ 10 mm のプラスチックシンチレータ中での陽子のエネルギー損失の 入射エネルギー依存性。

Figure 2: 厚さ 2.4 mm の炭素 (密度 1.8 g/cm³) 中での陽子のエネルギー損失の入射 エネルギー依存性。

Figure 3: 厚さ 2.4 mm のエポキシ中での陽子のエネルギー損失の入射エネルギー依存性。

Figure 4: 厚さ 2.4 mm の G10_FR4 中での陽子のエネルギー損失の入射エネルギー 依存性。

Figure 5: 厚さ 2.4 mm の CFRP 中での陽子のエネルギー損失の入射エネルギー依存性。

Figure 6: 厚さ 100 µm の銅中での陽子のエネルギー損失の入射エネルギー依存性。

Figure 7: 厚さ 10 mm のプラスチック中での陽子のクーロン多重散乱の入射エネル ギー依存性。

Figure 8: 厚さ 2.4 mm のプラスチック中での陽子のクーロン多重散乱の入射エネル ギー依存性。

Figure 9: 厚さ 2.4 mm の炭素 (1.8 g/cm³) 中での陽子のクーロン多重散乱の入射エ ネルギー依存性。

Figure 10: 厚さ 2.4 mm の CH₂ 中での陽子のクーロン多重散乱の入射エネルギー依存性。

Figure 11: 厚さ 2.4 mm の水 (H₂O) 中での陽子のクーロン多重散乱の入射エネル ギー依存性。

Figure 12: 厚さ 2.4 mm のエポキシ中での陽子のクーロン多重散乱の入射エネルギー 依存性。

Figure 13: 厚さ 2.4 mm の G10_FR4 中での陽子のクーロン多重散乱の入射エネル ギー依存性。

Figure 14: 厚さ 2.4 mm の CFRP 中での陽子のクーロン多重散乱の入射エネルギー 依存性。

Figure 15: 厚さ 100 µm の銅中での陽子のクーロン多重散乱の入射エネルギー依存性。

Figure 16: 厚さ 10 mm のプラスチック中での陽子のエネルギーストラグリングの入 射エネルギー依存性。

Figure 17: 厚さ 2.4 mm の炭素 (1.8 g/cm³) 中での陽子のエネルギーストラグリング の入射エネルギー依存性。

Figure 18: 厚さ 2.4 mm のエポキシ中での陽子のエネルギーストラグリングの入射 エネルギー依存性。

Figure 19: 厚さ 2.4 mm の G10_FR4 中での陽子のエネルギーストラグリングの入射 エネルギー依存性。

Figure 20: 厚さ 2.4 mm の CFRP 中での陽子のエネルギーストラグリングの入射エ ネルギー依存性。

Figure 21: 厚さ 100 µm の銅中での陽子のエネルギーストラグリングの入射エネル ギー依存性。

Figure 22: プラスチックシンチレータ (Polyvinyltoluene) 中での陽子の飛程の入射エ ネルギー依存性。

Figure 23: 炭素 (密度 1.8 g/cm³) における陽子の飛程 – エネルギー曲線。

Figure 24: エポキシにおける陽子の飛程 – エネルギー曲線。

Figure 25: G10_FR4 における陽子の飛程 – エネルギー曲線。

Figure 26: CFRP における陽子の飛程 – エネルギー曲線。

Figure 27: CH₂ における陽子の飛程 – エネルギー曲線。

Figure 28: 水 (H₂O) における陽子の飛程 – エネルギー曲線。

Figure 29: 銅における陽子の飛程 – エネルギー曲線。

Figure 30: プラスチックにおける陽子の飛程 – エネルギー曲線。低エネルギー領域の拡大図。

Figure 31: 炭素 (1.8 g/cm³) における陽子の飛程 – エネルギー曲線。低エネルギー領域の拡大図。

A 炭素繊維とエポキシの混合比として他の値を想定した 場合の CFRP の物理化学定数

CFRP における炭素繊維とエポキシの混合比としては、炭素繊維: 67~68%、エポキ シ: 32~33% という情報もある(この混合比の製品が存在する) [13]。それぞれの中 央値を取って(炭素繊維 67.5%、エポキシ 32.5%)、CFRP の特性を再計算した。得 られた Atomic & Nuclear 特性を表 4 に、含有元素の質量分率と(相対)原子数を 表 5 に示す。

Table 4: 炭素繊維とエポキシの混合比について 0.675:0.325 [13] を想定した場合の、 CFRP の Atomic & Nuclear 特性。

Quantity	Value	Units	Misc.
$\overline{\langle Z/A \rangle}$		$0.51330 \text{ mol g}^{-1}$	
Density	1.63	${ m g~cm^{-3}}$	
Mean ecitation energy (I)	79.50	eV	76.7 eV for Epotek-301-1
Radiation length (X_0)	42.37	$\rm g~cm^{-2}$	

Table 5: 炭素繊維とエポキシの混合比が 0.675:0.325 [13] の CFRP に含まれる元素の質量分率と(相対)原子数。

Element	Z	Atomic number	A	Mass fraction
		(Relative)		
0	8	0.140188	15.9990	0.061969
Н	1	1.000000	1.00800	0.027851
С	6	2.708081	12.0107	0.898676
Ν	7	0.029725	14.0070	0.011504

References

- [1] NIST-PSTAR: stopping-power and range tables for protons.
- [2] William R. Leo "Techniques for Nuclear and Particle Physics Experiments" Springer-Verlag Berlin Heidelberg GmbH (1994).
- [3] R. Anne, J. Herault, R. Bimbot, H. Gauvin, G. Bastin, F. Hubert, Nuclear Instruments and Methods in Physics Research B34 (1988) 295.
- [4] SDD Materials : Epoxy resin Epotek 301-1.
- [5] Atomic and nuclear properties of Epotek-301-1.

- [6] Some of atomic and nuclear properties of Epotek-301-1 (TITech).
- [7] SDD Materials : G10-FR4.
- [8] Atomic and nuclear properties of G10.
- [9] Some of atomic and nuclear properties of G10 (Full components for E_Glass) (TITech).
- [10] SDD Materials : M55J/EU334.
- [11] Update to ESTAR, PSTAR, and ASTAR Databases.
- [12] E.V. Benton and R.P. Henke, Nuclear Instruments and Methods 67 (1969) 87.
- [13] D. Yanagawa (HAYASHI REPIC), private communication.