Resonance function for line shape analysis

Y. Satou

March 6, 2014

Abstract

A comparison of two expressions for the Breit-Wigner resonance function is given to facilitate line shape analyses of neutron resonances.

1 Resonance functions

The following single Breit-Wigner resonance function was used in Ref. [1] for the line shape analysis of neutron resonances:

$$\sigma(E_{\rm rel}) \sim \frac{\Gamma(E_{\rm rel})\Gamma_r}{\{E_r + \Delta E(E_{\rm rel}) - E_{\rm rel}\}^2 + \{\Gamma(E_{\rm rel})/2\}^2}.$$
(1)

The shift function $\Delta E(E_{rel})$ and the level width $\Gamma(E_{rel})$, which depend on the relative energy E_{rel} , are given by using the penetration P and shift S factors [2] by the relations:

$$\Delta E(E_{\rm rel}) = \Gamma_r \times \{S(E_r) - S(E_{\rm rel})\} / \{2P(E_r)\},\tag{2}$$

$$\Gamma(E_{\rm rel}) = \Gamma_r \times P(E_{\rm rel}) / P(E_r). \tag{3}$$

Here the dependence on the angular momenta l for some quantities (e.g., P and S) is implicit.

In a recent paper [3], Riisager has shown the line shape function for a resonance populated by a Gamow-Teller β decay as [Eq.(5)]

$$\rho(E) = \frac{P(E)\gamma^2}{(E_0 + \Delta - E)^2 + [P(E)\gamma^2]^2},$$
(4)

where $\Delta = -[S(E) - S(E_0)]\gamma^2$. This expression is also consistent to those in Refs. [4, 5].

It is noted that with the following substitutions, Eqs.(1)-(3) are recovered from Eq.(4) apart from a trivial constant factor:

$$\Gamma = 2P\gamma^2, \tag{5}$$

$$E_{\rm rel} = E, \tag{6}$$

$$E_r = E_0. (7)$$

Table 1: Expressions for $A_l^2 z^l$ and $A_l^2 S_l z^l$ which characterise positive energy neutron wave functions. $z = \rho^2$. There is conviction that the expressions of $A_l^2 S_l z^l$ for l=2 and 3 in Table.A.1 of Ref. [2] must be corrected as given here.

l	$A_l^2 z^l$	$A_l^2 S_l z^l$
0	1	0
1	1+z	-1
2	$9 + 3z + z^2$	-3(6+z)
3	$225 + 45z + 6z^2 + z^3$	$-3(225+30z+2z^2)$

2 Penetration and shift factors

The penetration and shift factors may be calculated using the following formulae [2]:

$$P_l = \frac{\rho z^l}{A_l^2 z^l},\tag{8}$$

$$S_l = \frac{A_l^2 S_l z^l}{A_l^2 z^l}.$$
(9)

Here $\rho = kr$, $z = \rho^2$, and $A = \sqrt{F^2 + G^2}$, with F and G the Coulomb wave functions. The expressions of $A_l^2 z^l$ and $A_l^2 S_l z^l$ for various values of l are given in Table 1.

3 Miscellaneous

There is conviction that the expression of v'_2 [Eq.(5.8) of chapter 8] in Ref. [6] must be corrected as below:

$$v_2' = \left(1 - \frac{6}{x^2}\right)^2 + \left(\frac{6}{x^3} - \frac{3}{x}\right)^2.$$
 (10)

References

- [1] Y. Satou, et al., Phys. Lett. B 660 (2008) 320.
- [2] A.M. Lane and R. G. Thomas, Rev. Mod. Phys. 30 (1958) 257.
- [3] K. Riisager, Nucl. Phys. A 925 (2014) 112.
- [4] Yu. Aksyutina, et al., Phys. Lett. B 679 (2009) 191.
- [5] Z.X. Cao, et al., Phys. Lett. B 707 (2012) 46.
- [6] J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics, Dover, 1991.