BEAM PI

田中佳奈

2009.10.13.

概 要

• RF,F2Pla,F3Pla TDC Tcal:Tcal run

• F0-F2 TOF offset:A/Z=2 beam

• F2SSD gain, offset:A/Z=2 beam

• ²⁴O beam PI:run124

 \cdot $^{23}{\rm O}$ beam PI:run103

1 RF TDC Tcal(run199)

RF1cal [ns] = RF1raw [ch] * ch2ns

RF2cal [ns] = RF2raw [ch] * ch2ns

20ns 置きに発生させられるパルス信号を用いて、TDC のキャリブレーションを行い、定数 ch2ns を求めた。RF1, RF2 の結果を図 1 に示す。

 \boxtimes 1: RF1,2 TDC Tcal

2 F2Pla,F3Pla TDC Tcal(run199)

 $\mathrm{TLcal}\;[\mathrm{ns}] = \mathrm{TLraw}\;[\mathrm{ch}]\;^*\;\mathrm{ch2ns}$

 $\mathrm{TRcal}\;[\mathrm{ns}] = \mathrm{TRraw}\;[\mathrm{ch}]\; *\; \mathrm{ch2ns}$

20ns 置きに発生させられるパルス信号を用いて、TDC のキャリブレーションを行い、定数 ch2ns を求めた。F2Pla,F3Pla の結果を図 2 に示す。

🛛 2: F2Pla,F3Pla TDC Tcal(Left,Right)

3 F0-F2 TOF offset(run74,75)

不安定核ビーム生成ライン RIPS(**RI**KEN **P**rojectile fragment **S**eparator) の概観図を図 3 に示す。

図 3: 不安定核ビーム生成ライン RIPS の概観図

A/Z=2 beam の run74,75 を用いて、TOF の offset を求めた。run74,75 の RIPS の各種パ ラメータは表 1 の通り。

beam	一次標的	$B\rho 1$	F1 slit	degrader	$B\rho 2$	F2 slit
	[mm]	[Tm]	[mm]	$[mg/cm^2]$	[Tm]	[mm]
A/Z=2	W 0.2	2.3184	$2.4(\Delta P/P=\pm 0.1\%)$	empty	2.3279	50

表 1: RIPS のパラメータ (run74,75)

まず、

$$B\rho \quad \frac{A}{Z}v \tag{1}$$

$$TOF = \frac{Flight \text{ path Length}}{v}$$
(2)

の関係を用いて、 $B\rho$ 値 (一定値) から ${}^{16}O(A/Z=2)$ の速度 v、TOF の絶対値を表 2 のように求めた。

	Flight path Length[m]	$B\rho[Tm]$	v[cm/ns]	TOF[ns]
F0-F1	10.38	2.3184	10.4791	98.9862
F1-F2	11.341	2.3279	10.5167	107.763
F0-F2(TOF 絶対値)	21.721			206.749

表 2: ¹⁶O beam の TOF の絶対値 (run74,75)

一方、offset 前の F0-F2 間の TOF のスペクトルは図 4,6 のようになる。RF1 と RF2 は同 じピークを出力し、特定の核種が 2 箇所に現れる。RF の TDC モジュールは、時間の短い領 域で線形性が悪いという特性があるため、線形性が保たれる長い方の領域を使うこととする。

図 4: 横軸 RF1 vs 縦軸 RF2 (右下の領域では RF1 の値、左上の領域では RF2 の値を用いる)

TOF1 = (F2-RF1) + offset1

TOF2 = (F2 - RF2) + offset2

実験で得られたスペクトルでのガウス関数の ft より、 16 O に相当するピークが TOF の絶 対値 206.749ns に合うように、offset を求めた。

⊠ 5: TOF1,TOF2 offset

 \boxtimes 6: TOF(16O)=206.7\pm0.42 ns (relative resolution=0.20%)

4 F2SSD gain,offset(run74,75)

dE[MeV] = F2SSD[ch] * gain[MeV/ch] + offset[MeV]

run74,75(A/Z=2 beam) を用いて、F2SSD のキャリブレーションを行った。図 7 のように、 A/Z=2 の gate をかけて、核種の F2SSD[ch] を求めた。この結果と Bethe-Bloch の式による エネルギー損失 dE[MeV] (B ρ =2.3279 Tm) を一次直線で fit させることにより、図 8 のよう に、F2SSD に関するパラメータを求めた。

 \boxtimes 7: F2SSD calibration(A/Z=2 gate)

 \boxtimes 8: F2SSD calibration(A/Z=2 gate)

5 ²⁴O beam PI(run124)

run	beam	一次標的	$B\rho 1$	F1 slit	degrader	F1PPAC	$B\rho 2$	F2 slit
		[mm]	[Tm]	[mm]	$[mg/cm^2]$		[Tm]	[mm]
124	²⁴ O	Be 1.5	3.9916	72	Al 426(#3)	in	3.7773	15

表 3: RIPS のパラメータ

$$\Delta = -F1X/dis$$
 (運動量の広がり $dis = 24mm/\%$) (3)

$$B\rho = B\rho_0(1 + \Delta/100) \tag{4}$$

$$\beta = \frac{\text{FL02}}{\text{TOF02} \times \text{c}} \quad (\text{FL02} = 21.721\text{m}) \tag{5}$$

$$p_u = \frac{\text{AMU} \times \beta}{\sqrt{1 - \beta^2}} \quad (Atomin \ Mass \ Unit = 931.488 MeV/c^2) \tag{6}$$

$$BB_{fac} = \frac{1}{\beta^2} \left\{ log\left(\frac{2m_e c^2 \beta^2}{I(1-\beta^2)}\right) - \beta^2 \right\}$$
(7)

たたし
$$\frac{2m_ec^2}{I(\mathrm{Si})} = \frac{2 \times 0.511 \times 10^6}{172.25} = 5933.2$$
 (8)

$$Z = C_1 \left(\frac{dE_{SSD}}{BB_{fac}}\right)^{1/2} + C_2 \tag{9}$$

$$\frac{A}{Z} = \frac{B\rho \times c}{p_u} + C_3 \tag{10}$$

の関係を用いて、実験で設定した B ρ 値から Z、A/Z を求めた。これが PI した時の Z、A/Z の値と同じになるようにパラメータ C_1, C_2, C_3 を決めた。

TOF02[ns] vs F2SSD[MeVee] より Z=8 の選択を行い、その後、F1X[mm] vs TOF02[ns] より A/Z=3 の選択を行った。²⁴O として 7.5 \leq Z \leq 8.5, 2.94 \leq A/Z \leq 3.06 と範囲を指定 した。BEAM count=341020 個、live time=9356.529sec であることから、主な核種の purity と count rate を求めた。

 \blacksquare 9: $^{24}{\rm O}$ beam run PI

 \boxtimes 10: Z,A/Z calibration

 \boxtimes 11: $^{24}{\rm O}$ beam PI (after calib) purity=1211172/14112063=8.58%

核種	count	purity	cps
all	341020	100.0	$36.4 \mathrm{cps}$
^{24}O	29357	8.61%	3.14cps
^{23}O	17977	5.27%	$1.92 \mathrm{cps}$
^{22}O	2377	0.70%	$0.25 \mathrm{cps}$
^{22}N	14880	4.36%	$1.59 \mathrm{cps}$
$^{21}\mathrm{N}$	10726	3.15%	$1.15 \mathrm{cps}$
27 F	1704	0.50%	$0.18 \mathrm{cps}$
26 F	60129	17.63%	$6.43 \mathrm{cps}$
^{25}F	63288	18.56%	$6.76 \mathrm{cps}$
$^{28}\mathrm{Ne}$	25063	7.35%	$2.68 \mathrm{cps}$
²⁷ Ne	2458	0.72%	0.26cps

表 4: ²⁴O beam(only run124)

	all event	^{24}O gate
BEAM	341020	29357
BEAM+NEUT	7311	736
BEAM+NaI	7222	661

表 5: 24 O beam(only run124)

 \boxtimes 12: $^{24}{\rm O}$ TOF (NDC target size gate= $\phi40{\rm mm},$ F1X gate= $\pm2.4{\rm mm}(\Delta{\rm P/P}{=}\pm0.1\%)$)

μ (ns)	1σ (ns)	relative resolution
187.43	0.52197	0.278%

表	6:	^{24}O	TOF	reso	lutio
- 1- 1	0.	0	TOT	10001	i u u u u

6 ²³O beam PI(run103)

run	beam	一次標的	$B\rho 1$	F1 slit	degrader	F1PPAC	$B\rho 2$	F2 slit
		[mm]	[Tm]	[mm]	$[mg/cm^2]$		[Tm]	[mm]
103	²³ O	Be 1.5	3.8232	72	Al 426(#3)	in	3.6084	15

表 7: RIPS parameters

I made PI figure in ²³O beam run using calibrated Z,A/Z in ²⁴O beam run. I gated 6.5 $\leq Z \leq 7.5$ and $2.81 \leq A/Z \leq 2.94$ as ²³O(Z=8,A/Z=2.875).

Table.8 is main nuclei's information of purity and count rate (BEAM=1520404 counts, live time=3602.168sec).

 \boxtimes 13: Z,A/Z calibration (using same parameters with $^{24}{\rm O}$ beam run)

 \boxtimes 14: $^{23}{\rm O}$ beam PI (using same parameters with $^{24}{\rm O}$ beam run) purity=1093826/15239368=7.18%

nuclei	count	purity	cps
all	1520404	100.0	422.08cps
^{24}O	2884	0.19%	0.80cps
^{23}O	90816	5.97%	$25.2 \mathrm{cps}$
^{22}O	100343	6.60%	$27.9 \mathrm{cps}$
^{22}N	359	0.02%	$0.10 \mathrm{cps}$
^{21}N	88922	5.85%	$24.7 \mathrm{cps}$
^{20}N	9789	0.64%	$2.72 \mathrm{cps}$
^{26}F	4530	0.30%	$1.26 \mathrm{cps}$
$^{25}\mathrm{F}$	236533	15.6%	$65.7 \mathrm{cps}$
24 F	206982	13.6%	$57.5 \mathrm{cps}$
28 Ne	1776	0.12%	$0.49 \mathrm{cps}$
$^{27}\mathrm{Ne}$	23065	1.52%	$6.40 \mathrm{cps}$
26 Ne	45318	2.98%	$12.6 \mathrm{cps}$
²⁹ Na	3593	0.24%	1.00cps

表 8: 23 O beam run(only run103)

	all event	^{23}O gate
BEAM	1520404	90815
BEAM+NEUT	24757	1820
BEAM+NaI	29266	2165

表 9: ²³O beam run(only run103)