NEUT analysis

Kana Tanaka

2010.01.12.

概 要

I show the analysis of NEUT briefly.

- $\boldsymbol{\cdot}$ QDC pedestal:ped run
- TDC Tcal:Tcal run
- \cdot dT offset, dT2x(for GATE of slew correction): muon run
- \cdot QDC gain (for GATE of slew correction): muon run
- TOF offset
(for slew correction easily): Pb+p run, Li(p,n) run
- $\boldsymbol{\cdot}$ slew correction: Li(p,n) run
- \cdot dT offset (after slew correction): muon run
- \cdot QDC vs dT calibration (after slew correction): muon run
- \bullet TOF offset (after slew correction):proton beam

1 NEUT analysis

1.1 QDC pedestal (run198,199)

ALraw=ALraw-ped [ch]

ARraw=ARraw-ped [ch]

ペデスタル run198,199 より、QDC のペデスタルピークにガウス関数を fit させ、定数 ped を求めた。1stLayer-Left の結果を図 1,2 に示す。

 \boxtimes 1: QDC pedestal(1stLayer-Left)

図 2: QDC pedestal を引いた後 (1stLayer-Left)

1.2 TDC Tcal (run198,199)

TLcal [ns] = TLraw [ch] * ch2ns

 $\mathrm{TRcal}\;[\mathrm{ns}] = \mathrm{TRraw}\;[\mathrm{ch}] \, * \, \mathrm{ch2ns}$

20ns 置きに発生させられるパルス信号を用いて、TDC のキャリブレーションを行い、定数 ch2ns を求めた。1stLayer-Left-101,102,103,104 の結果を図 3 に示す。NEUT の TDC full range は 300ns である。

☑ 3: TDC Tcal(1stLayer-Left-101,102,103,104)

1.3 dT offset,dT2x calibration (muon run)

 $^1\mathrm{I}$ used all event in muon run.

$$dTcal = (TLcal - TRcal) - dToffset$$
(1)

$$dt2x = 2100[mm]/dTwidth[ns] \qquad (for \ long \ NEUT)$$
(2)

$$dt2x = 1120[mm]/dTwidth[ns] \qquad (for short NEUT) \tag{3}$$

☑ 4: dT offset fitting (left:before , right:after)

⊠ 5: before/after dT offset (dT vs ID)

¹slew 補正で X の gate をかけるためのキャリブレーション。slew 補正後に再びきちんと行う。

 \boxtimes 6: after dt2x calibration (x vs y)

1.4 QDC gain(muon run)

$$Acal = \sqrt{ALraw * ARraw} / qgain * dE$$
(4)

 2 I used muon run(1044,23,36,39,40,41,42,43,44). I used following gate for each neutron wall to select only cosmic ray.

• -250mm \leq x local position (center of scintillator = 0 mm) \leq 250mm

• NEUT multiplicity = 12

Energy loss of muon in 60mm scintillator is dE=11.7MeVee. I fit landau function for landau peak and got parameters 'qgain' from [ch] of QDC to [MeVee].

gate	Wall 1	Wall 2	Wall 3	Wall 4
all	1062346	1211015	917443	928582
multi=12	237564	254112	190692	192228

表 1: multiplicity=12 gate (muon run)

 \boxtimes 7: fitting of the landau function

²slew 補正で ADC の gate をかけるためのキャリブレーション。slew 補正後に再びきちんと行う。

 \boxtimes 8: before/after QDC gain calibration (ID vs Araw)

1.5 TOF offset (Pb+p run)

$$\left(\frac{\text{TLcal} + \text{TRcal}}{2}\right)_{\text{NEUT}} = \left(\frac{\text{TLcal} + \text{TRcal}}{2}\right)_{\text{raw}} - \text{TOFoffset}$$
 (5)

³Before slew correction, I calibrated TOF offset using Pb+p run(run 4).

In this run, gamma ray was emittd. The velocity of gamma ray is same of the velocity of light.

I determined TOF offset so that TOF of gamma ray was to be 0[ns]+FL/c. It is easier to correct slewing.

I used following gate to select only gamma ray.

- VETO hit = 0
- NEUT multiplicity = 1
- pulse height of QDC $\geq 2.0 \mathrm{MeVee}$

gate	count (after gate)	analysis event/all event
all	236038	100.0%
VETO	213545	90.5%
multi=1	163297	69.2%
2MeVee	118908	50.4%

表 2: gate for TOF offset (run4)

 $^{^{3}}$ slew 補正を簡単に行うための offset。gamma 線の run を使って、48 本の各シンチレータの時間情報が同程度の範囲に収まるように定数を差し引きした。TOF の offset は slew 補正後に再びきちんと行う。

1.6 slew correction (Li(p,n) run)

$$TOF_{raw} = \left(\frac{TLcal + TRcal}{2}\right)_{NEUT} - \left(\frac{TLcal + TRcal}{2}\right)_{F2}$$
(6)

$$TOF_{slew} = TOF_{raw} - \frac{P_L}{\sqrt{ALraw}} - \frac{P_R}{\sqrt{ARraw}}$$
(7)

$$TLslew = TLcal - \frac{2P_L}{\sqrt{ALraw}}$$
(8)

$$TRslew = TRcal - \frac{2P_R}{\sqrt{ARraw}}$$
(9)

I corrected slewing of neutron counter using Li(p,n) run(run 6-10,12-20).

In this run, neutron of mono-energy was emittd, so TOF should be same and not dependent on the pulse height of QDC.

I used following gate to select only neutron from Li(p,n) interaction.

 $\boldsymbol{\cdot}$ BEAM $\boldsymbol{\times}$ NEUT

• VETO hit = 0

• NEUT multiplicity = 1

• pulse height of QDC ≥ 6.0 MeVee

• -150mm \leq x hit position (center of beam = 0 mm) \leq 150mm

gate	count (after gate)
all	8442187
VETO	3727439
multi=1	2520492
6MeVee	626802
≥ 150 mm	106341 (Wall1:34541,2:28922,3:21498,4:21380)

ΞĒ.	9.	mata	for	alarre	compostion	(munc 10 19 90)
বহ	э:	gate	IOL	siew	correction	(runo-10,12-20)

	before	after
LN 1	0.682	0.338
LN 2	0.703	0.344
SN 1	0.676	0.349
SN 2	0.685	0.359
all	0.686	0.347

 \mathbf{a} 4: T_{NEUT} – T_{F2} timing resolution $\Delta T(ns)$ (TOF=0ns offset)

 \blacksquare 9: before/after slew correction (up:long-NEUT L/R , down:short-NEUT L/R)

 \boxtimes 10: timing resolution of neutron peak after slew correction (neutron TOF = 0ns offset)

1.7 dT offset,dT2x calibration (muon run)

☑ 11: before/after dT offset (after slew correction) (dT vs ID)

 \boxtimes 12: before/after dT2x calibration (after slew correction) (x vs y)

1.8 QDC vs dT calibration (muon run)

$$Aslew = (Araw - (P_1 * dT^2 + P_2 * dT^4))/qgain_{slew} * dE$$
(13)

I used muon run (1044,23,36,39,40,41,42,43,44). I used following gate for each neutron wall to select only cosmic ray.

• NEUT multiplicity = 12

Energy loss of muon in 60mm scintillator is dE=11.7MeVee. I fit landau function for landau peak and got parameters 'qgain_{slew}' from [ch] of QDC to [MeVee].

⊠ 13: before/after QDC gain calibration

1.9 TOF offset (proton beam run)

I tried two method of TOF offset for proton beam.

- used gamma-ray from Pb+p run
- $\boldsymbol{\cdot}$ used neutron peak from $\mathrm{Li}(\mathbf{p},\mathbf{n})$ run

And,I compare TOF resolution of neutron emitted from Li(p,n) reaction with following gate to select only neutron from Li(p,n) interaction.

- $\boldsymbol{\cdot}$ BEAM $\boldsymbol{\times}$ NEUT
- VETO hit = 0
- NEUT multiplicity = 1
- pulse height of QDC ≥ 6.0 MeVee
- -150mm \leq x hit position (center of beam = 0 mm) \leq 150mm

I got higher TOF resolution of neutron by method 'used neutron peak from Li(p,n) run'.

1.9.1 used gamma-ray from Pb+p run

I used Pb+p run(#4) for TOF offset of proton-beam. 4

$$TOF(tgt - NEUT)_{slew} = \frac{TLslew + TRslew}{2} - TOFoffset_{slew} + gpeak$$
(14)

I determined TOF offset so that TOF of gamma ray was to be 0[ns]+gpeak. Where, 'gpeak' is the peak of ${\rm FL}_{slew}/{\rm c}$.

I used following gate to select only gamma ray in Pb+p run.

- VETO hit = 0
- NEUT multiplicity = 1
- pulse height of QDC $\geq 2.0 \mathrm{MeVee}$

And,I got TOF resolution of neutron emitted from Li(p,n) reaction.

 \boxtimes 14: TOF of neutron emitted from Li(p,n) run (before/after slew correction)

	before	after
LN 1	0.65320	0.38350
LN 2	0.69422	0.41252
SN 1	0.65863	0.53789
SN 2	0.66284	0.40979

表 5: TOF 1 σ resolution(ns) of neutron peak emitted from Li(p,n) run (TOF(F2-tgt)=const.)

 $^{^{-4}}$ gamma 線による TOF 合わせは、陽子ビームが F2-tgt 間で、ある一定値の TOF を持つという仮定の元で行われている。

1.9.2 used neutron peak from Li(p,n) run

I used Li+p run(#4) for TOF offset of proton-beam. 5

$$TOF(tgt - NEUT)_{slew} = \frac{TLslew + TRslew}{2} - TOFoffset_{slew} + peakT$$
(15)

I determined TOF offset so that TOF of gamma ray was to be 0[ns]+peakT.

Where, 'peakT' is result of calculation of Li(p,n)Be reaction.⁶

I used following gate to select only neutron in Li+p run.

- BEAM \times NEUT
- VETO hit = 0
- NEUT multiplicity = 1
- pulse height of $QDC \ge 6.0 MeVee$

And,I got TOF resolution of neutron emitted from Li(p,n) reaction. We can see that timing resolution gets worse with back of plane.

☑ 15: TOF of neutron emitted from Li(p,n) run (after slew correction)

	TOF	1σ resolution(ns)
LN 1	41.89	0.344
LN 2	42.47	0.343
SN 1	43.77	0.349
SN 2	44.35	0.371

 \mathbf{a} 6: TOF 1σ resolution(ns) of neutron peak emitted from Li(p,n) run

⁵ここでの neutron peak による TOF 合わせは、陽子ビームが F2-tgt 間で、ある一定値の TOF を持つとい う仮定の元で行われている。

⁶放出された中性子の運動エネルギーは放出された角度に依存した値。どのような角度で放出された中性子が どのような運動エネルギー、速度を持つかを計算し、各シンチレータにおいて FL から TOF を計算した。

And, I got neutron beta, gamma,Energy,momentum spectrum from ${\rm TOF}({\rm tgt-NEUT})$ and FL in ${\rm Li}({\rm p,n})$ run.

$$\beta = \frac{FL}{TOF_{NEUT} * c}$$
(16)

$$\gamma = \frac{1}{\sqrt{(1-\beta)(1+\beta)}}\tag{17}$$

$$E = \frac{M_n}{\sqrt{1 - \beta^2}} - M_n \qquad (M_n = 939.56 MeV/c)$$
 (18)

$$P = M_n \beta \gamma \qquad (M_n = 939.56 MeV/c) \tag{19}$$

🗵 16: beta,gamma,Energy(MeV/u) spectrum of neutron emitted from Li(p,n) reaction

	mean	1σ
beta	0.3603	0.0035
gamma	1.072	0.0017
$Energy(MeV/c^2/u)$	67.65	1.48
$\mathrm{momentum}(\mathrm{MeV}/\mathrm{c}/\mathrm{u})$	362.86	4.09

表 7: beta,gamma,Energy,momentum of neutron emitted from Li(p,n) reaction