fragment PI

Kana Tanaka

2010.01.08.

概 要

I show the analysis of fragment PI briefly.

- fragment PI method

- fragment PI (²⁴O, ²³O beam run)
 level scheme of ²⁰O, ²¹O, ²²O
 Mass spectrum(²⁴O, ²³O beam run)

fragment PI method 1

I used following gate.

- BEAM trigger
- \cdot beam@F2 : Z=8 beam
- target size @NDC : ϕ 40.0 mm
- VETO : no hit

 \boxtimes 1: $x_f - x_{tgt}$ vs $\tan \theta_f$

Then, I used following gate.

- BEAM trigger
- beam@F2 : ²⁴O beam(²⁴O beam run), ²³O beam(²³O beam run)
- target size @NDC : ϕ 40.0 mm
- $\boldsymbol{\cdot}$ VETO : no hit

$$mass(a.u.) = \frac{\Delta Brho}{Brho} - (A_2 + B_2 * TOF(tgt - HODO))$$
(2)

☑ 2: HODT vs Brho(a.u.)

2 fragment PI(²⁴O,²³O beam run)

I saw 'mass(a.u.)' with the following gate.

- BEAM $\,\times\,$ NEUT trigger
- beam@F2 : 24 O beam(24 O beam run), 23 O beam(23 O beam run)
- target size @NDC : ϕ 40.0 mm
- VETO : no hit NEUT : multiplicity = 1, 2, 3, ...
- NEUT : pulse height of QDC ≥ 6.0 MeVee
- HODO : Z=8 (using only ID=2,3,4,5)

Then, I saw mass(a.u.) vs Energy of gamma-ray with the added gate.

- BEAM $\,\times\,$ GAMMA trigger
- GAMMA : multiplicity = 1

I didn't change parameters about DALI. So, I used same parameters about DALI with online analysis.

I think that the big peak of mass(a.u.) spectrum in ²⁴O beam run is not ²³O and it's ²²O, because we can see energy of gamma-ray corresponding 1383keV,3199keV gamma-ray from ²²O in this big peak. Also we can see similar Egamma spectrum in ²²O-fragment gate in ²³O beam run.

 \boxtimes 3: fragment PI in 24O beam run. We can see gamma ray corresponded 1383keV,3199keV gamma-ray from $^{22}{\rm O}.$

 \boxtimes 4: Egamma spectrum in 24O beam run with $^{22}\mathrm{O},^{21}\mathrm{O},^{20}\mathrm{O}$ gate.

 \boxtimes 5: fragment PI in 23O beam run. We can see gamma ray corresponded 1383keV,3199keV gamma-ray from ^{22}O and 1675keV gamma-ray from $^{20}O.$

 \boxtimes 6: Egamma spectrum in 23O beam run with $^{22}\mathrm{O},^{21}\mathrm{O},^{20}\mathrm{O}$ gate.

3 level scheme of ²⁰**O**,²¹**O**,²²**O**

ref: M.Stanoiu et al., Phys. Rev. C 69, 034312 (2004)

 \boxtimes 7: level scheme of ²⁰O,²¹O,²²O.

reference : M.Stanoiu et al., Phys.Rev.C 69. 034312(2004)

4 Mass spectrum(²⁴O,²³O beam run)

I calibrated A/Z.

$$A/Z = P_1 * mass(a.u.) + P_2 \tag{3}$$

And I got A.

$$A = A/Z * 8.$$
(4)

 \boxtimes 8: mass spectrum of fragment particles in $^{24}{\rm O}$ beam run

fragment	А	$\Delta A(FWHM)$	$A/\Delta A$
^{24}O	23.86	0.7987	29.87
^{23}O			
²² O	21.94	1.000	21.94

表 1: mass resolution of fragment particles in 24 O beam run

 \boxtimes 9: mass spectrum of fragment particles in $^{23}{\rm O}$ beam run

fragment	A	$\Delta A(FWHM)$	$A/\Delta A$
^{23}O	22.93	0.7594	30.19
^{22}O	22.03	0.8558	25.74
^{21}O	21.04	1.125	18.70
^{20}O	19.88	0.8842	22.48

 ${\bf \bar{\xi}}$ 2: mass resolution of fragment particles in $^{23}{\rm O}$ beam run

5 Next

• fragment momentum ($^{24}O, ^{23}O$ beam run)